Читаем Искусственный интеллект. Основные понятия полностью

plt.ylim(0, material_size[1])

plt.gca.set_aspect('equal', adjustable='box')

plt.xlabel('Width')

plt.ylabel('Height')

plt.title('Material Cutting Optimization')

plt.grid(True)

plt.show

# Пример использования функции для визуализации

material_size = (10, 10) # Размеры листа материала

cut_pieces = [(1, 1, 3, 2), (5, 2, 4, 3), (2, 6, 2, 2)] # Координаты и размеры заготовок

visualize_cutting(material_size, cut_pieces)

```



На результате видим визуализацию листа материала и расположенных на нем заготовок. Лист материала представлен черным прямоугольником, который указывает на границы доступного пространства для раскроя. Каждая заготовка представлена красным прямоугольником с указанием ее координат и размеров на листе материала. Эта визуализация помогает наглядно представить, каким образом происходит раскрой материала и как заготовки размещаются на листе с учетом ограничений.

Этот код создает графическое представление листа материала и расположенных на нем заготовок. Лист материала обозначен черным прямоугольником, а каждая заготовка – красным. Вы можете изменить размеры листа материала и расположение заготовок, чтобы увидеть, как изменяется визуализация.

Алгоритмы оптимизации с искусственным иммунитетом (англ. Artificial Immune System, AIS) представляют собой компьютерные алгоритмы, вдохновленные работой естественной иммунной системы. Они применяют принципы иммунного ответа, такие как распознавание и уничтожение антигенов, для решения задач оптимизации.

В основе AIS лежит аналогия с функционированием биологической иммунной системы. Вместо клеток и антигенов в AIS используются искусственные аналоги – антитела и антигены. Антитела представляют собой структуры данных, которые представляют решения задачи, а антигены – нежелательные элементы или участки пространства поиска.

Процесс работы AIS включает в себя этапы обнаружения, распознавания и уничтожения антигенов. На первом этапе генерируется начальная популяция антител, представляющая возможные решения задачи. Затем происходит процесс обнаружения антигенов, то есть нежелательных элементов в пространстве поиска. После обнаружения антитела, способные распознать и связаться с антигенами, усиливаются, а те, которые не эффективны, отбрасываются. Наконец, выбранные антитела, успешно связавшиеся с антигенами, могут использоваться для генерации новых кандидатов решений, что позволяет улучшить производительность алгоритма.

Алгоритмы оптимизации с искусственным иммунитетом демонстрируют свою эффективность в решении различных задач оптимизации, таких как поиск оптимальных параметров в машинном обучении, проектирование нейронных сетей, а также в задачах адаптивного управления и оптимизации структур данных.

Рассмотрим пример задачи оптимизации распределения ресурсов в сети. Допустим, у нас есть 3 сервера и 5 задач, и нам нужно распределить эти задачи между серверами таким образом, чтобы минимизировать общую нагрузку на сеть и время выполнения задач. Мы можем использовать алгоритм оптимизации с искусственным иммунитетом для решения этой задачи.

import numpy as np

import random

# Функция для оценки приспособленности распределения задач

def network_load(tasks_distribution):

return np.sum(tasks_distribution)

# Применение операторов мутации и скрещивания для создания новых кандидатов

def mutation(tasks_distribution):

mutated_tasks_distribution = tasks_distribution.copy

server_index = np.random.randint(len(tasks_distribution))

task_index = np.random.randint(len(tasks_distribution[0]))

mutated_tasks_distribution[server_index][task_index] = np.random.randint(0, 100)

return mutated_tasks_distribution

def crossover(parent1, parent2):

child = parent1.copy

for i in range(len(parent1)):

for j in range(len(parent1[0])):

if np.random.rand > 0.5:

child[i][j] = parent2[i][j]

return child

def replace_worst_part(population, new_candidates):

fitness_values = [network_load(tasks_distribution) for tasks_distribution in population]

sorted_indices = np.argsort(fitness_values)

worst_part_indices = sorted_indices[-len(new_candidates):]

for i, index in enumerate(worst_part_indices):

population[index] = new_candidates[i]

return population

# Определение параметров задачи и алгоритма

num_servers = 3

num_tasks = 5

population_size = 10

num_generations = 100

# Инициализация начальной популяции

population = [np.random.randint(0, 100, (num_servers, num_tasks)) for _ in range(population_size)]

# Основной цикл генетического алгоритма

for generation in range(num_generations):

# Оценка приспособленности текущей популяции

fitness_values = [network_load(tasks_distribution) for tasks_distribution in population]

# Выбор лучших кандидатов для скрещивания

sorted_indices = np.argsort(fitness_values)

best_candidates = [population[i] for i in sorted_indices[:population_size // 2]]

# Создание новых кандидатов с помощью скрещивания и мутации

new_candidates = []

for _ in range(population_size // 2):

parent1 = random.choice(best_candidates)

parent2 = random.choice(best_candidates)

Перейти на страницу:

Похожие книги

Все под контролем: Кто и как следит за тобой
Все под контролем: Кто и как следит за тобой

К каким результатам может привести использование достижений в сфере высоких технологий по отношению к нашей частной жизни в самом ближайшем будущем? Как мы можем защитить свою частную жизнь и независимость в условиях неконтролируемого использования новейших достижений в этой сфере? Эта проблема тем более актуальна, что даже США, самая свободная демократия мира, рискует на наших глазах превратиться в государство всеобщего учета и тотального контроля.Книга талантливого публициста и известного специалиста по компьютерным технологиям Симеона Гарфинкеля – это анализ тех путей, по которым может осуществляться вторжение в частную жизнь, и способов, с помощью которых мы можем ему противостоять.

Симеон Гарфинкель

Публицистика / Прочая компьютерная литература / Документальное / Книги по IT
Компьютер в помощь астрологу
Компьютер в помощь астрологу

Книга поможет овладеть основами астрологии и научит пользоваться современными программами для астрологических расчетов. На понятном обычному человеку уровне дано объяснение принципов и идеологии астрологии «докомпьютерных» времен. Описана техника работы с программами, автоматизирующими сложные астрологические расчеты. Рассмотрены основные инструменты практикующего астролога: программы семейства Uranus для новичков, ZET 8 и Stalker — для специалистов, Almagest — для экспертов. Для всех этих программ дано развернутое описание интерфейса и приведены инструкции расчета гороскопов различного типа. Изложены методы интерпретации гороскопов с помощью компьютера. Все астрологические расчеты приведены в виде подробных пошаговых процедур, которые позволят даже начинающему получать астрологические результаты профессионального уровня. Прилагаемый компакт-диск содержит видеокурс по работе с популярными астропроцессорами.Для широкого круга пользователей.

А. Г. Жадаев , Александр Геннадьевич Жадаев

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT