Читаем Искусство и визуальное восприятие полностью

Мы обрисовали визуальную область коры головного мозга как область трехмерного пространства, в котором возбуждения, как только они возникают, становятся изолированными и в принципе свободны принимать любую пространственную конфигурацию — плоскую или имеющую объем, фронтальную или расположенную наклонно. Какой-либо приоритет здесь отсутствует. Однако возбуждения будут ограничены в своей свободе одним важным обстоятельством: они не могут отклоняться от проективной модели, образованной на сетчатке глаза. Чтобы проиллюстрировать это положение, я прибегну к искусному инструменту, при помощи которого китайцы производят арифметические действия и который представляет собой каркас из параллельно натянутых проволок с1 нанизанными на них бусами, то есть счеты. Рискуя быть занесенным в черные списки любым почтенным психологом, я буду воображать теперь визуальную области коры головного мозга как трехмерные счеты, на которых возбуждения представлены в виде бусинок. На рис. 159 показанастимулирующая модель четырьмя точками. Посредством проективной модели, образованной на сетчатке глаза, точки в нашем расположены таким образом, что образуют во фронтальной плоскости квадрат. Но в принципе это необязательно должно быть квадратом. Четыре бусинки могут беспрепятственно скользить вдоль своих проволочек, образуя в любой из бесчисленного числа плоскостей какую-нибудь четырехстороннюю фигуру. Или же вообще они могут не находиться в общей плоскости.

Все, что было здесь сказано о плоскостных фигурах, справедливо также и в отношении объемных тел. Фигура, изображенная на рис. 160,а. состоит из трех параллелограммов. Если каждый из этих параллелограммов примет наклонное положение, которое превратит его форму в квадрат, то модель в целом будет восприниматься как куб со свойственными ему тремя измерениями, а не как плоский и неправильный шестиугольник, расположенный во фронтальной плоскости и обладающий более простой визуальной структурой. Рис. 160, а воспринимается как проекция куба. Однако не каждая такая проекция заставляет нас видеть фигуру куба. На рис. 160, 6





этот эффект значительно слабее, потому что симметрия фронтальной фигуры несколько способствует восприятию данного изображения как двухмерного. И для большинства зрителей довольно трудно увидеть в изображении на рис. 160, с просвечивающийся рис. 160, b. Эти примеры иллюстрируют закономерность, которую сформулировал в своем раннем исследовании по данному вопросу Коффка. «Когда простая симметрия достигается в двух измерениях, то мы будем видеть плоскую фигуру. Если достижение симметрии влечет засобой третье измерение, тогда мы будем видеть уже объемное тело» [4]. Слегка перефразировав эти слова, можно сказать, что данное правило утверждает следующее: восприятие модели как двухмерной или как объемной зависит от того варианта, с помощью которого образуется более простая модель.

В этом месте нашего изложения необходимо внести две небольшие поправки. Как фигура, изображенная на рис. 156, так и фигура на рис. 160, а не выглядят совершенно законченными. С точки зрения третьего измерения фигура, изображенная на рис. 156, слишком высока. Если слегка сократить ее размеры по высоте (рис. 161, а), то результат окажется вдвойне удовлетворительным. Эффект объемности является здесь более неотразимым, а получившаяся в результате наклонная модель выглядит гораздо убедительнее как фигура квадрата. Аналогичным образом, если ту же самую операцию проделать с рис. 160, а, то эффект объемности станет сильнее, а получившаяся в результате сокращения модель воспринимается скорее как куб. Взглянув на наши счеты, мы поймем, что этого и следовало ожидать. Если модель изгоняется из фронтальной плоскости, то ее края, принявшие наклонное положение, будут вытягиваться. Степень этого удлинения будет зависеть от угла наклона. Следовательно, если во фронтальном варианте все грани являются одинаковыми (как это имеет место в нашем примере), то в плоскости, расположенной наклонно, они будут неравными. Равносторонние ромбы образуют фигуры прямоугольников, а не фигуры квадрата. Чтобы получить квадрат, мы должны исправить длины граней в соответствии с их наклоном. Становится понятным, почему это усиливает эффект объемности. Если мы получим вместо квадрата фигуру прямоугольника, то в результате образуется менее простая фигура. Это означает в свою очередь, что выгода, которую несет с собой простота, достигаемая посредством устранения искажения в ромбе, оказывается меньшей. Следовательно, будет меньшей и напряженность в ромбе, а также и побуждение избавиться от него благодаря трехмерности.

Перейти на страницу:

Похожие книги

Психология коммуникаций
Психология коммуникаций

В монографии представлены истоки и механизмы формирования, развития и функционирования коммуникативной подсистемы общественной жизни. Авторами обобщены и проанализированы эмпирические работы последних лет в области психологии коммуникаций в отечественной и зарубежной науке. Это позволило предопределить существующие коммуникативные стратегии и тактики как наиболее эффективные в различных кризисных ситуациях, особенности их реализации и освоения в профессиональной деятельности. Коммуникавистика представлена как целостная система на пути изучения природы социального взаимодействия в исторической ретроспективе ее основных школ, учений и направлений в психологии, философии и культурологии. Даны обзоры авторских исследований различных феноменов социальных коммуникаций в кросскультурном аспекте, включая техники фасилитации больших групп.Книга предназначена для тех, кто занимается психологическими исследованиями в области человеческих коммуникаций, социологов и философов, политологов и демографов, студентов и аспирантов гуманитарных специальностей, а также для всех интересующихся реалиями современного социума.

Алла Константиновна Болотова , Юрий Михайлович Жуков

Психология и психотерапия