Вот еще одно предостережение относительно шорткатов такого рода. Каким должно быть следующее число в этой последовательности?
2, 8, 16, 24, 32 …
В ней много степеней двух. Но что там делает число 24? В общем, если вы сумели заключить, что следующее число этой последовательности – 47, я советую вам в ближайшую же субботу купить лотерейный билет. Это выигрышные номера тиража британской Национальной лотереи, разыгранного 26 сентября 2007 года. Мы настолько пристрастились к поиску паттернов, что часто видим их там, где никакого паттерна ожидать нельзя. Лотерейные билеты выпадают случайным образом. Без паттернов. Без тайных формул. Шорткатов к миллионным состояниям не бывает. Однако в главе 8 я объясню, что даже случайные вещи следуют неким паттернам, которые можно рассматривать в качестве потенциальных шорткатов. Если речь идет о случайностях, шорткатом будет рассмотрение долгосрочной перспективы.
Концепцию паттерна можно использовать в качестве шортката к пониманию того, действительно ли какое-либо явление случайно, и этот метод имеет отношение к легкости запоминания числовых последовательностей.
Шорткат к хорошей памяти
Поскольку в интернете каждую секунду появляется огромное количество данных, компании ищут более рациональные способы их хранения. Выявление паттернов в данных облегчает их сжатие, благодаря которому для их хранения требуется меньше места. Именно эта идея лежит в основе технологий, подобных форматам JPEG или MP3.
Возьмем изображение, составленное только из черных и белых пикселей. В любом таком изображении где-нибудь может быть большой участок, состоящий из сплошных белых пикселей. Можно не описывать по отдельности каждый белый пиксель, используя для сохранения изображения такое же количество памяти, которое требуется для всех его данных, а прибегнуть к шорткату. Тогда нужно записать информацию о местоположении границы области белых пикселей и просто добавить указание закрасить эту область белым. Как правило, программный код, который я могу написать для такого закрашивания, займет гораздо меньше места, чем записи о каждом белом пикселе этой области.