Но при подгонке уравнений к данным необходима осторожность. Если взять данные о численности населения Соединенных Штатов за последнее столетие, они довольно хорошо описываются квадратным уравнением, подобным тому, с помощью которого мы описывали траекторию мяча. Однако, если использовать более сложное уравнение, в котором степень
Эта история служит предостережением тем, кто считает, что для научных исследований достаточно одного лишь использования больших данных. В данных действительно могут проявляться паттерны, но, чтобы понять, почему эти паттерны должны быть основаны на тех или иных уравнениях, мы по-прежнему должны сочетать данные с аналитическим мышлением. Сделанное Галилеем открытие квадратичного закона гравитации было впоследствии объяснено благодаря теоретическому анализу Ньютона, показавшему, почему в данном случае правильно использовать именно квадратные уравнения.
Шорткат в гиперпространство
Идея превращения геометрии в числа не только позволяет лучше ориентироваться в трехмерном пространстве. Она еще и открывает перед нами порталы в миры, которые мы никогда не увидим своими глазами. Одним из самых захватывающих моментов моего математического путешествия по искусству шортката было открытие возможности изучать многомерные пространства. Тот день, когда я впервые прочитал о том, как этот язык позволяет построить куб в четырех измерениях, до сих пор запечатлен в моей памяти.
Это объясняло, как космический корабль может переместиться с одного конца Вселенной на другой по шорткату через четвертое измерение. Это давало ответ на вопрос, как Вселенная может быть конечной, но не иметь границ. Это даже позволяло распутывать узлы, которые невозможно развязать в трех измерениях.
Но этот словарь позволяет не только путешествовать в пространстве. Благодаря отображению данных в многомерные миры проявляются скрытые структуры. Когда вы строите по данным график, вы видите двумерную тень объекта, который следовало бы изображать в многомерном пространстве. Такой шорткат вполне может прояснить нюансы, скрытые этими двумерными тенями. Итак, пристегните ремни: мы отправляемся в путешествие по гиперпространству!
Чтобы попасть в четвертое измерение, нужно начать со второго. Предположим, я хочу описать квадрат в терминах картезианского словаря координат: я могу сказать, что квадрат – это фигура с четырьмя вершинами, расположенными в точках (0,0), (1,0), (0,1) и (1,1). Очевидно, для определения любого положения в плоском двумерном мире нужны всего две координаты, но, если я захочу учесть еще и высоту над уровнем моря, можно добавить третью координату. Третья координата также понадобится, если я захочу описать при помощи координат трехмерный куб. Восемь вершин куба можно описать точками (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1) и, наконец, крайней точкой с координатами (1,1,1).
Рис. 3.4. Построение гиперкуба при помощи координат
В одной колонке словаря Декарта содержатся фигуры и геометрические свойства, а в другой – числа и координаты. Проблема заключается в том, что при попытке выйти за пределы трехмерных тел визуальное восприятие отказывает, потому что физического четвертого измерения не существует. Но у словаря Декарта есть одно великолепное свойство, которое осознал великий немецкий математик XIX века Бернхард Риман, учившийся у Гаусса в Геттингене: вторая сторона словаря продолжает действовать даже и в этом случае.
Чтобы описать четырехмерный объект, нужно всего лишь добавить четвертую координату, указывающую величину смещения в этом новом направлении. Хотя я не могу построить четырехмерный куб физически, тем не менее я могу точно описать его при помощи чисел. У него 16 вершин начиная с точки (0,0,0,0), за которой идут вершины в точках (1,0,0,0), (0,1,0,0) и так далее, вплоть до самой удаленной от первой вершины в точке (1,1,1,1). Числа образуют код, описывающий фигуру. При помощи этого кода я могу исследовать эту фигуру, причем мне даже не нужно видеть ее физически.
Этим дело не кончается. Можно перейти к пяти, шести и даже большему числу измерений и построить гиперкубы и в этих мирах. Например, у