Гравитация лихо накрутила из туманов огромные диски и продолжала их вращать. Их центры все сильнее сжимались, так как на них все сильнее давили периферические массы. Это были шары из турбулентного газа (водородно-гелиевые) приговоренные своими циклопическими массами к роли бесконечного ядерного взрыва. Впрочем, наступает момент, когда такая звезда, спалив запас водорода, превращается в красного гиганта и начинает уже гореть гелий. Это горение позволяет образоваться ядрам углерода и кислорода. Затем происходит возникновение все более и более тяжелых элементов, горит углерод, производя неон, магний и еще больше кислорода. Реакции вновь меняются, уже новообразованные элементы вступают во взаимодействия. Но в это же время продолжает работать гравитационная сила, доводя атомы и электроны до предела спрессованости. Затем срабаотывает принцип Паули. Самые последние процессы производят уже атомы железа. Если такую пылающую штуку быстро разобрать и обследовать, то в ней уже возможно обнаружить (помимо водорода, гелия, кислорода, дейтерия, углерода, неона, железа) еще множество различных элементов, включая серу, магний, кремний и азот. Все заканчивается взрывом. Ко всеобщему удовольствию все взрывается к чертовой матери и наполняет вселенную новыми элементами уже в виде облаков. Чуть позже взаимодействие четырех основных сил сформировало из газово-пылевых (небулярных) облаков космические тела.
Мы знаем, что литосфера Земли состоит из нескольких тысяч различных минералов. Большая их часть имеет собственную вещность и осязаемость. Меньшая присутствует в виде отдельных атомов и молекул, вкрапленных в другие субстраты или породы.
Осязаемые (стабильные) минералы подразделяются по своему происхождению на осадочные, гидротермальные и магматические.
Здесь очень важно не погрузиться в тягомотнейшую трясину академических споров меж научными школами, которые считают и классифицируют эти минералы немного по-разному. Да, эта «трясина» восхитительна, но она насчитывает несколько сотен томов и состоит из доводов и контрдоводов советской, американской и европейской школ.
Советская астро-геология, где до сих пор царствует тень профессора Каттерфельда признает «стабильными» лишь 2000 минералов Земли, автор теории «минеральной эволюции» Роберт Хейзен таковыми считает не менее 3700, а планетолог Энди Ноул отстаивает совсем иные цифры. При желании мы можем набрать еще примерно 30 мнений по данному поводу, конфликтующих меж собой, но выглядящих вполне академично и обоснованно.
Все дело в том, что Каттерфельд считает только «химически чистые» минералы, образовавшиеся в добиологический период планеты, а (к примеру) Хейзен признает минералами и те, что формировались под влиянием зародившейся органической формы жизни.
Категорически рознятся меж собой и данные по количеству минералов на Луне и Марсе. Каттерфельд полагает, что мы с уверенностью можем говорить лишь о 89 лунных минералах. Отчасти это справедливо, т. к. в тех 400 килограммах лунного грунта, что было доставлено «Аполлонами» в земные лаборатории, их именно столько. Американская астро-геология оценивает минеральный потенциал Луны чуть-чуть щедрее.
Такая же история с Марсом.
(Как бы яростно не бодались меж собой геологи, астро-геологи и планетологи различных школ, но все они, в принципе, согласны как в наличии существенной количественной, так и качественных разниц меж Землей, Луной, Марсом.)
Зная эти цифры и тот химизм, который порождает минералы, комбинируя элементы в разных условиях, можно легко и почти безошибочно набросать «портрет» планеты от момента ее образования до наших дней.
Через эти, очень простые данные мы получаем представление о вулканизме, рельефе, наличии жидкой воды, температурах, возрасте, магнетизме, радиоактивности, массе и даже об угловой скорости её осевого вращения в разные периоды.
Как известно, чем больше скорость осевого вращения, тем более пологим становится общий рельеф. (Как выражаются планетологи, он выполаживается.) А выполаживание несколько меняет минералогический портрет верхнего слоя планеты.
Существенная доля боратов и фторидов подсказывает нам, что горы — это сравнительно недавнее приобретение Земли. Следовательно, когда-то скорость осевого вращения была значительно больше. Мы понимаем, что земные сутки продолжались 4–6–8 часов, рельеф был пологим, а соответственно, моря мелкими и горячими.
Эти выводы добавляют живописные подробности.
Конечно, чтобы вынести вердикт о развитости или не развитости космического тела, нам потребуется для сравнения еще несколько планетных объектов (примерно) того же типа, что и Земля.
Возьмем хорошо изученную Луну.
В тех 400 килограммов ее грунта, что было доставлено «Аполлонами» в земные лаборатории, мы увидим всего 89 минералов. Допустим щедрое предположение, что их в три раза больше, чем удалось собрать. Но минералогическая развитость Земли и Луны все равно останется несопоставимой.