Одним из способов минимизации влияния указанных источников шума и получения более четкой картины утечки времени в среднем случае является сложение результатов от множества запусков профайлера. Существует множество весомых причин для создания средств тестирования и тестовых нагрузок до оптимизации разрабатываемых программ. Наиболее важной причиной, как правило, гораздо более важной, чем регулировка производительности, является то, что впоследствии, по мере модификации программы, можно использовать возвратное тестирование ее корректности. После того как это сделано, возможность выполнять профилирование повторяющихся тестов под нагрузкой является хорошим побочным эффектом, который часто предоставляет более точную информацию, чем несколько запусков вручную.
Различные факторы склонны перекладывать затраты времени на вызывающие программы, а не на вызываемые, что увеличивает вес верхних узлов графа вызовов. Например, издержки вызова функции часто относят к вызывающей программе (так это или нет, в некоторой степени зависит от архитектуры конкретной машины и от того, где профайлеру разрешено размещать пробы). Макросы и встраиваемые функции, в случае если компилятор их поддерживает, не показываются в отчете профайлера вообще. Расходуемое ими время относится к вызывающей функции.
Более важно то, что многие средства учета времени создают такое впечатление, будто время, затраченное на подпрограммы, относится к вызывающей программе. (Данная особенность характерна для профайлера
Для получения более прозрачных результатов следует организовать код так, чтобы программы верхнего уровня содержали как можно больше обращений к программам более низкого уровня, а не ко встроенному коду. Если издержки управляющей логики верхнего уровня остаются минимальными, то структура вызова кода будет стремиться организовать отчет профайлера таким способом, который будет сравнительно простым для понимания.
Использование профайлеров еще больше проясняет ситуацию, если в меньшей степени рассматривать их как способы накопления отдельных показателей производительности, и в большей степени как способы определения закономерности, по которой производительность изменяется как функция от интересующих параметров. Такими параметрами могут быть, например, размер проблемной области, частота процессора, скорость диска, размер памяти, оптимизация компилятора или другие релевантные факторы. Необходимо попытаться подобрать модель для данных чисел, используя программное обеспечение с открытым исходным кодом, такое как R, или качественный коммерческий инструмент, подобный MATHLAB.
Естественное сглаживание данных, определяемое моделью, характеризуется выявлением главных факторов и пренебрежением второстепенных, связанных с шумом. Например, при использовании кубической модели в подпрограмме обращения матрицы в MATHLAB на случайных матрицах от 10x10 до 1000x1000, очевидно, что фактически получается 3 куба с четко определенными границами, которые примерно соответствуют областям "в кэше", "в памяти, но вне кэша" и "вне памяти". Данные демонстрируют такой эффект, даже если не искать его, а просто изучать отклонения от наилучших результатов.
12.3. Размер кода
Наиболее эффективный способ оптимизировать код заключается в том, чтобы сохранять его небольшой размер и простоту. Ранее в данной книге уже рассматривалось множество весомых причин для сохранения небольшого размера и простоты кода. В данной главе рассматривается еще одна такая причина: необходимо, чтобы центральные структуры данных и циклы в коде, время выполнения которых критически важно, никогда не выходили за пределы кэша.
Рассмотрим целевую машину как иерархию типов памяти, упорядоченных по удаленности от процессора. Она включает в себя собственные регистры процессора; его конвейер инструкций; кэш первого уровня (L1); кэш второго уровня (L2); вероятно, кэш третьего уровня (L3); оперативная память (которая среди специалистов старой школы Unix до сих пор изящно называется основой (core)); и дисковые накопители, на которых располагается область подкачки. Такие технологии, как SMP, кластеры с общей памятью и технология доступа к неоднородной памяти (Nonuniform Memory Access — NUMA) добавляют больше уровней в картину, но только расширяют общий разброс.