Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Преобразование энергии. Задумайтесь над таким интересным вопросом: каким должно быть сопротивление нагрузки, чтобы при данном сопротивлении источника ей была передана максимальная мощность? (Термины «сопротивление источника», «внутреннее сопротивление» и «эквивалентное сопротивление» относятся к одному и тому же сопротивлению).

Нетрудно заметить, что при выполнении условий Rн = 0 и Rн = , переданная мощность равна нулю. Условие Rн = 0 означает, что Uн = 0, а Iн = Uн/Rн и поэтому Рн = UнIн = 0. Условие Rн = означает, что UнUи и Iн= 0, поэтому Рн = 0. Максимум заключен, следовательно, между 0 и .

Упражнение 1.10. Докажите, что при выполнении условия  мощность в нагрузке максимальна для данного сопротивления источника. Замечание: пропустите это упражнение, если вы не знаете дифференциального исчисления, и примите на веру, что приведенное здесь утверждение справедливо.

Чтобы приведенный пример не вызвал у вас неправильного впечатления, хотим еще раз подчеркнуть, что обычно схемы проектируют таким образом, чтобы сопротивление нагрузки было значительно больше, чем внутреннее сопротивление источника сигнала, работающего на эту нагрузку.

1.06. Динамическое сопротивление

Часто приходится иметь дело с электронными устройствами, в которых ток I не пропорционален напряжению U; в подобных случаях нет смысла говорить о сопротивлении, так как отношение U/I не является постоянной величиной, независимой от U, а, наоборот, зависит от U. Для подобных устройств полезно знать наклон зависимости U-I (вольт-амперной характеристики). Иными словами, представляет интерес отношение небольшого изменения приложенного напряжения к соответствующему изменению тока через схему: U/I (или dU/dI). Это отношение измеряется в единицах сопротивления (в омах) и во многих расчетах играет роль сопротивления. Оно называется сопротивлением для малых сигналов, дифференциальным сопротивлением, динамическим или инкрементным сопротивлением.

Зенеровские диоды (стабилитроны). В качестве примера рассмотрим зенеровский диод (стабилитрон), вольт-амперная характеристика которого приведена на рис. 1.13.

Рис. 1.13.Вольт-амперные характеристики.

а — резистор (линейная зависимость); б — зенеровский диод (нелинейная зависимость).

Зенеровские диоды используют для получения постоянного напряжения на каком-либо участке схемы. Это достигается за счет тока (в грубом приближении постоянного), получаемого от источника большего напряжения в той же схеме. Например, зенеровский диод, представленный на рис. 1.13, преобразует питающий ток, изменяющийся в указанном диапазоне, в соответствующий (но более узкий) диапазон напряжений. Важно понять, как будет вести себя соответствующее напряжение на зенеровском диоде (зенеровское напряжение пробоя) при изменении питающего тока, это изменение есть мера влияния изменений питающего тока. Оно характеризуется динамическим сопротивлением зенеровского диода, определяемым при заданном токе. (Учтите, что динамическое сопротивление зенеровского диода в режиме стабилизации изменяется обратно пропорционально току). Например, динамическое сопротивление зенеровского диода, создающего напряжение стабилизации 5 В, может быть равно 10 Ом при токе 10 мА.

Воспользовавшись определением динамического сопротивления, найдем, чему будет равно изменение напряжения при изменении питающего тока на 10 %: URдинI = 10·0,1·0,001 = 10 мВ или U/U = 0,002 = 0,2 %. Тем самым подтверждаются высокие стабилизирующие качества зенеровского диода. На практике часто приходится иметь дело с такими схемами, как показанная на рис. 1.14.

Рис. 1.14.Регулятор на зенеровском диоде.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже