Читаем Искусство схемотехники. Том 1 (Изд.4-е) полностью

Транзистор с оптической связью. Существует еще один способ решения проблемы пробоя транзистора в высоковольтных источниках питания с применением сравнительно низковольтного проходного транзистора для нерегулируемого (известного) выходного напряжения. В подобных случаях высокое напряжение должен выдерживать только управляющий транзистор, но, используя оптически связанные транзисторы, можно избежать и этого. Эти приборы, о которых мы поговорим ниже в связи с сопряжением цифровых элементов в гл. 9, состоят в действительности из двух элементов, электрически изолированных друг от друга: светодиода, который излучает свет, если через него протекает ток в прямом направлении, и фототранзистора (или фотопары Дарлингтона), расположенных вблизи друг друга в непрозрачном корпусе. Прохождение тока через диод приводит транзистор в проводящее состояние, как если бы в транзисторе протекал базовый ток. Для того чтобы вывести фототранзистор в активный режим, как и в случае обычного транзистора, необходимо приложить коллекторное напряжение. В большинстве случаев базовый вывод отсутствует. Оптопары имеют, как правило, изоляцию, способную выдержать напряжение между входом и выходом в несколько тысяч вольт.

На рис. 6.50 показано несколько способов применения транзистора с оптической связью в высоковольтном источнике.



Рис. 6.50.Высоковольтный стабилизатор с оптической изоляцией.


На первой схеме фототранзистор Т2 закрывает транзистор Т3, если напряжение на выходе поднимается слишком высоко. На второй схеме, на которой показан только фрагмент с проходным транзистором, фототранзистор, находясь в возбужденном состоянии, увеличивает выходное напряжение, поэтому входы усилителя ошибки должны быть инвертированы. Обе схемы формируют некоторый выходной ток в цепи смещения проходного транзистора, поэтому для того чтобы удержать выходное напряжение от подъема при отсутствии нагрузки, между выходом и землей следует включить определенную нагрузку. Эту работу может выполнить делитель напряжения для съема выхода или отдельный шунтирующий резистор, подключенный к выходу, который, вообще говоря, всегда рекомендуется подключать в высоковольтных источниках.

Плавающий стабилизатор. Избежать применения высоковольтных компонентов в схеме управления источника высокого напряжения можно еще одним способом — «подвесить» управляющую схему на потенциал проходного транзистора, сравнивая падение напряжения на его собственном эталонном источнике с падением между ним и землей. Для такого рода применений предназначена превосходная ИС стабилизатора МС1466, которой требуется вспомогательный слаботочный плавающий источник напряжением 20–30 В для питания собственной схемы. Выходное напряжение ограничивается только проходными транзисторами и изоляцией вспомогательного источника питания (напряжением пробоя изоляции трансформатора). Схема МС1466 характеризуется очень хорошей стабилизацией и прецизионной схемой ограничения тока, поэтому она вполне подходит для точных «лабораторных» источников питания. Однако следует предостеречь вас: в МС1466 в отличие от большинства современных стабилизаторов нет внутренней тепловой защиты.

Изящный способ построения плавающего стабилизатора может быть осуществлен с помощью недавно появившейся ИС — LM10 — сочетания операционного усилителя и источника эталонного напряжения, явившей собой знаменательное событие в технологии производства ИС со времени открытия Видлара (см. разд. 4.13). Эта схема работает только от одного источника питания 1,2 В, т. е. ее можно подключить к перепаду база-эмиттер проходного транзистора Дарлингтона! Пример показан на рис. 6.51.



Рис. 6.51.Высоковольтный «плавающий» стабилизатор.


Если вы любите аналогии, то представьте себе жирафа, который измеряет свой рост, глядя на землю с высоты, а затем стабилизирует его, меняя соответствующим образом длину шеи. Схема TL783 фирмы Texas Instruments - это ИС стабилизатора на 125 В, которая работает аналогичным образом; в случае небольших токов она заменяет схему на дискретных компонентах, показанную на рис. 6.51.


Последовательное соединение транзисторов. На рис. 6.52 показан трюк с последовательным соединением транзисторов для увеличения напряжения пробоя.



Рис. 6.52.Последовательное включение транзисторов для повышения напряжения пробоя.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже