Читаем Искусство схемотехники. Том 1 [Изд.4-е] полностью

Мы хотим, чтобы вы научились решать стоящие перед вами задачи, имея под рукой минимум — оборотную сторону почтового конверта и ручку. Тогда блестящие идеи, возникшие у вас в любой момент, не будут встречать препятствий на пути своего развития.

И еще несколько принципов нашей доморощенной философии: среди начинающих наблюдается тенденция вычислять значения сопротивлений резисторов и характеристики других компонентов схем с большой точностью, доступность же карманных калькуляторов в наше время помогает развитию этой тенденции.

Поддаваться ей не следует по двум причинам: во-первых, компоненты сами по себе имеют определенную конечную точность (наиболее распространенные резисторы — ± 5 %; характеристики транзисторов, например часто задаются одним-двумя коэффициентами); во-вторых, одним из признаков хорошей схемы является ее нечувствительность к точности величин компонентов (бывают, конечно, и исключения). И еще: вы скорее придете к интуитивному пониманию схем, если разовьете в себе способность быстро прикидывать «в уме», а не будете увлекаться вычислениями с ненужной точностью на красивых калькуляторах.

Некоторые считают, что для того чтобы скорее научиться оценивать величину сопротивления, полезно вводить понятие проводимость, G = 1/R. Ток, протекающий через элемент с проводимостью G, к которому приложено напряжение U, определяется как I = G·U (это закон Ома).

Чем меньше сопротивление проводника, тем больше его проводимость и тем больше ток, протекающий под воздействием напряжения, приложенного между концами проводника.

С этой точки зрения формула для определения сопротивления параллельно соединенных проводников вполне очевидна: если несколько резисторов или проводящих участков подключены к одному и тому же напряжению, то полный ток равен сумме токов, протекающих в отдельных ветвях. В связи с этим проводимость соединения равна сумме отдельных проводимостей составных элементов: GG1 + G2 + G3+…, а это выражение эквивалентно выражению для параллельно соединенных резисторов, приведенному выше.

Инженеры неравнодушны к обратным величинам, и в качестве единицы измерения проводимости они установили 1 сименс (1 См = 1/1 Ом), который иногда называют «мо» («ом» наоборот). Хотя понятие проводимости и помогает развить интуицию в отношении сопротивления резисторов, широкого применения оно не находит, и большинство предпочитает иметь дело с величинами сопротивления, а не проводимости.

Мощность и резисторы. Мощность, рассеиваемая резистором или любым другим элементом, определяются как Ρ = U·I.

Пользуясь законом Ома, эту формулу можно записать в эквивалентном виде:

Ρ = I2R и Ρ = U2/R.

* * *

Упражнение 1.5. Возьмем схему, работающую от батареи с напряжением 15 В. Докажите, что независимо от того, как будет включен в схему резистор, обладающий сопротивлением более 1 кОм, мощность на нем не превысит 1/4 Вт.

Упражнение 1.6. Дополнительное упражнение: для Нью-Йорка требуется 1010 Вт электрической энергии при напряжении 110 В (цифры вполне правдоподобны: 10 млн. жителей, каждый потребляет в среднем 1 кВт электроэнергии). Высоковольтный кабель может иметь диаметр 25,4 мм. Давайте подсчитаем, что произойдет, если в качестве кабеля взять провод из чистой меди диаметром 0,305 м. Сопротивление такого провода составляет 0,05 мкОм (5·10-8 Ом) в расчете на 0,305 м. Определите: а) потери мощности в расчете на 0,305 м, исходя из того, что потери оцениваются величиной I2R; б) длину кабеля, на которой будут потеряны все 1010 Вт; в) если вы знаете физику, определите, до какой температуры нагреется кабель (σ = 6· 10"12 Вт/(К4·см2)).

Если расчет выполнен правильно, то результат, вероятно, удивил вас. Как же разрешить проблему?

* * *

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника