Читаем Искусство схемотехники. Том 1 [Изд.4-е] полностью

Импеданс источника и нагрузки. Последнее замечание очень важно, поэтому задержим на нем свое внимание, прежде чем приступить к вычислениям, связанным со свойствами эмиттерных повторителей. При анализе электронных схем всегда стремятся связать выходную величину с какой-либо входной, как например на рис. 2.7.



Рис. 2.7.Представим «нагрузку» схемы как делитель напряжения.


В качестве источника сигнала может выступать выход усилительного каскада (с эквивалентным последовательным импедансомZвых), к которому подключен еще один каскад или нагрузка (обладающая входным импедансом Zвх). Вообще говоря, нагрузочный эффект следующего каскада проявляется в ослаблении сигнала, о чем шла речь ранее в разд. 1.05. В связи с этим обычно стремятся к тому, чтобы выполнялось условие Zвых << Zвх (практическое правило рекомендует использовать коэффициент 10, что на самом деле весьма удобно).

В некоторых случаях вполне можно пренебречь этим общим требованием для обеспечения стабильности источника по отношению к нагрузке. В частности, если нагрузка подключена всегда (например, входит в состав схемы) и если она представляет собой известную и постоянную величину Zвх, то нет ничего опасного в том, что она «нагружает» источник. Тем не менее, хуже не будет, если уровень сигнала не изменяется при подключении нагрузки. Кроме того, если Zвх изменяется при изменении уровня сигнала, то стабильный источник (Zвых << Zвх) обеспечивает линейность, а делитель напряжения дает искажение линейной зависимости.

Наконец, в двух случаях условие Zвых << Zвх соблюдать просто нельзя: в радиочастотных схемах импедансы обычно выравнивают (Zвых = Zвх) по причине, которую мы объясним в гл. 14.

Второе исключение относится к случаю, когда передаваемым сигналом является не напряжение, а ток. В этом случае ситуация меняется на противоположную, и нужно стремиться к выполнению условия Zвх << Zвых (для источника тока Zвых = ).

Входной импеданс и импеданс эмиттерного повторителя. Итак, эмиттерный повторитель обладает способностью согласовывать импедансы источников сигналов и нагрузок. В этом и состоит его назначение.

Давайте подсчитаем входной и выходной импеданс эмиттерного повторителя. Предположим, что в приведенной схеме в качестве нагрузки выступает резистор R (на практике иногда так и бывает, в других случаях нагрузку подключают параллельно резистору R, но при параллельном соединении преобладает сопротивление R). Пусть напряжение на базе изменилось на величину ΔUБ; соответствующее напряжение на эмиттере составит ΔUЭ = ΔUБ. Определим изменение тока эмиттера: ΔUэ = ΔUб/R, равное ΔIб = [1/(h21Э + 1)]ΔIэ = ΔUб/R(h21э + 1) (с учетом того, что Iэ = Iк + Iб). Входное сопротивление схемы равно ΔUб/ΔIэ, следовательно,

rвх = (h21э + 1)R.

Коэффициент β(h21э) обычно имеет значение около 100, поэтому подключение нагрузки с небольшим импедансом приводит к тому, что импеданс со стороны базы становится очень большим; с такой нагрузкой схеме легко работать.

В выполненном только что преобразовании, как и в гл. 1, мы использовали для обозначения некоторых величин строчные буквы, например h21э, тем самым мы указали, что имеем дело с приращениями (малыми сигналами). Чаще всего нас интересует изменение напряжения (или тока) в схеме, а не постоянные значения (или значения по постоянному току) этих величин. Очень часто эти изменения малых сигналов и представляют собой реальный сигнал, например в усилителе звуковых частот, который имеет устойчивое «смещение» по постоянному току (см. разд. 2.05). Различие между коэффициентом усиления по постоянному току (h21э) и коэффициентом усиления по току для малого сигнала h21Э не всегда очевидно, и для того, и для другого случая используют понятие коэффициента усиления β.

Если учесть, что h21Э ~= h21э (за исключением очень высоких частот) и в большинстве случаев интерес представляет не точное, а приблизительное значение этого коэффициента, то использование коэффициента β вполне допустимо. В полученном соотношении фигурируют активные сопротивления, однако его можно обобщить и распространить на комплексные импедансы, если переменные ΔUб,ΔIэ и др. заменить их комплексными представлениями. В результате получим правило преобразования импедансов для эмиттерного повторителя:

Zвх = (h21э + 1)Zнагр.

Проделав аналогичные преобразования, найдем выходной импеданс эмиттерного повторителя Zвых (импеданс со стороны эмиттера) при использовании источника сигнала с внутренним импедансом Zист:

Zвых = Zист/(h21э + 1).

Строго говоря, в выходной импеданс схемы надо включить и сопротивление параллельного резистора R, но Zвых(импеданс со стороны эмиттера) играет основную роль.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника