Читаем Искусство схемотехники. Том 1 [Изд.4-е] полностью

Пример разработки схемы эмиттерного повторителя. В качестве примера разработаем схему эмиттерного повторителя для сигналов звуковой частоты (от 20 Гц до 20 кГц). Напряжение UKK составляет +15 В, ток покоя равен 1 мА.

Шаг 1. Выбор напряжения UЭ. Для получения симметричного сигнала без срезов необходимо, чтобы выполнялось условие UЭ = 0,5UKK, или +7,5 В.

Шаг 2. Выбор резистора RЭ. Ток покоя должен составлять 1 мА, поэтому RЭ = 7,5 кОм.

Шаг 3. Выбор резисторов R1 и R2. Напряжение UБ — это сумма UЭ + 0,6 В, или 8,1 В. Из этого следует, что сопротивления резисторов R1 и R2 относятся друг к другу как 1:1,17. Учитывая известный уже нам критерий выбора нагрузки, мы должны подобрать резисторы R1 и R2 так, чтобы сопротивление их параллельного соединения составляло приблизительно 75 кОм или меньше (0,1 от произведения 7,5 кОм на h21э)· Выберем следующие стандартные значения сопротивлений: R1 = 130 кОм, R2 = 150 кОм.

Шаг 4. Выбор конденсатора C1. Конденсатор C1 и сопротивление нагрузки источника образуют фильтр высоких частот. Сопротивление нагрузки источника есть параллельное соединение входного сопротивления транзистора со стороны базы и сопротивления делителя напряжения базы. Предположим, что нагрузка схемы велика по сравнению с эмиттерным резистором, тогда входное сопротивление транзистора со стороны базы равно h21эRэ, т. е. составляет ~= 750 кОм. Эквивалентное сопротивление делителя равно 70 кОм. Тогда нагрузка для конденсатора составляет 63 кОм и емкость конденсатора должна быть равна по крайней мере 0,15 мкФ. В этом случае точке —3 дБ будет соответствовать частота, меньшая чем 20 Гц.

Шаг 5. Выбор конденсатора С2. Конденсатор С2 и неизвестный импеданс нагрузки образуют фильтр высоких частот. Мы не ошибемся, если предположим, что импеданс нагрузки не будет меньше R3. Тогда для того, чтобы точке — 3 дБ соответствовало значение частоты, меньшее чем 20 Гц, емкость конденсатора С2 должна быть равна по крайней мере 1,0 мкФ. Так как мы получили двухкаскадный фильтр высоких частот, то для предотвращения снижения амплитуды сигнала на самой низкой из интересующих нас частот емкости следует взять немного побольше. Вполне подойдут следующие значения: C1 = 0,5 и С2 = 3,3 мкФ.

Эмиттерные повторители с расщепленными источниками. В связи с тем что сигналы часто находятся «возле земли», удобно использовать симметричное питание повторителей — с положительным и отрицательным напряжением. В такой схеме легче обеспечить смещение, и для нее не нужны развязывающие конденсаторы (рис. 2.17).



Рис. 2.17.Эмиттерный повторитель со связью по постоянному току с расщепленным источником питания.


Замечание: в схеме обязательно должна быть предусмотрена цепь постоянного тока для тока базы, даже если этот ток течет просто «на землю». В схеме на рис. 2.17 эту роль играет источник сигнала, соединенный с землей по постоянному току. Если же это не так (например, имеется емкостная связь с источником), то следует предусмотреть связь базы с землей через резистор (рис. 2.18). Как и прежде, сопротивление RБ должно составлять приблизительно 0,1 от произведения h21эRЭ.



Рис. 2.18.


Упражнение 2.5. Разработайте эмиттерный повторитель с источником напряжения ± 15 В для диапазона звуковых частот (20 Гц-20 кГц). Ток покоя равен 5 мА, на входе имеется емкостная связь.


Пример плохого смещения. К сожалению, иногда встречаются такие неудачные схемы, как на рис. 2.19.



Рис. 2.19.Не следуйте этому примеру!


При выборе резистора RБ для этой схемы предположили, что коэффициент h21э имеет определенное значение (100), оценили величину тока базы и предположили, что падение напряжения на RБ составит 7 В. Расчет схемы выполнен плохо; коэффициент h21э не следует брать за основу расчета, так как его значение может существенно изменяться. Если напряжение смещения задать с помощью делителя напряжения, как в рассмотренном выше примере, то точка покоя будет нечувствительна к изменениям коэффициента β. Например, в предыдущей схеме напряжение на эмиттере увеличится всего на 0,35 В (5 %), если вместо номинальной величины h21э = 100 будем иметь величину h21э = 200. На примере эмиттерного повторителя мы показали вам, как можно попасть в ловушку и разработать никуда не годную схему. Такие ошибки возможны и в схемах с другим включением транзисторов (например, дальше в этой главе будет представлена схема с общим эмиттером).


2.06. Транзисторный источник тока

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника