Выходы n
-МОП-элементов. Выходная ступень 5-вольтовой n-МОП-логики показана на рис. 9.17.
Рис. 9.17.
Выходная схема n-МОП-логики.
T1
представляет собой ключ, а Т2 — истоковый повторитель. Для того чтобы установить на выходе нижний уровень на затвор транзистора T1 подается напряжение +5 В; напряжение на выходе при этом будет ниже 0,5 В даже при отводе тока в несколько миллиампер.Ситуация в состоянии высокого выходного уровня несколько ухудшается: при минимальном высоком выходном ТТЛ-уровне +2,4 В напряжение затвор-исток составляет всего 2,6 В, что приводит к сравнительно высокому значению сопротивления Rвкл
; для более высоких выходных напряжений ситуация быстро ухудшается.Кривые на рис. 9.18 иллюстрируют это положение.
Рис. 9.18
. Типовые выходные характеристики по току n-МОП-элементов. 1 — ток отдачи; 2 — ток отвода; 3 — точка запуска схемы Дарлингтона.
В результате нагрузочная способность n
-МОП-выхода составляет всего 0,2 мА (отдача тока) при напряжении на выходе +2,4 В. Это вполне допустимо для управления ТТЛ-входами, но выходит за пределы допустимого для 5-вольтовой КМОП-логики (используйте резистор, подключенный к шине питания, или вставьте вентиль НСТ или ACT); подобная неприятная ситуация изображена на рис. 9.19.
Рис. 9.19.
Для работы СИД с уровнями токов мультиплексируемого устройства отображения (25–50 мА во включенном состоянии) выход n
-МОП-элемента должен отдавать ток около 1 мА при +4,1 В. Но это невозможно, поскольку напряжение UЗИ должно при этом быть всего 0,9 В, а может быть, даже ниже порогового напряжения полевого транзистора. Вспомните еще, что все схемы 5-вольтовой логики должны функционировать при отклонении напряжения питания ±10 %, т. е. при напряжении +4,5 В. Для управления светодиодами (или другими сильноточными приборами) от n-МОП-элементов желательно использовать схемы, показанные на рис. 9.20.
Рис. 9.20.
Управление нагрузками с выходов n-МОП-элементов.
В первой схеме низкий выход n
-МОП-элемента отбирает ток 2 мА, переводя pnp-транзистор в состояние полной проводимости. На второй схеме npn-транзистор схемы Дарлингтона переключается в открытое состояние малым выходным током n-МОП-элемента, находящегося в состоянии высокого уровня. В этой схеме ВЫСОКИЙ выход фиксируется на уровне падения напряжения на двух диодах выше земли, что может показаться не совсем «дружелюбным» обстоятельством, но оказывается, что выходы n-МОП-элементов проектируются с таким расчетом, чтобы их можно было таким образом закорачивать на землю; причем достаточно малые выходные токи получают возможность управлять базой транзистора с заземленным эмиттером в схеме Дарлингтона без нарушения работоспособности. Типовой n-МОП-выход может отдавать 2 Μ А при +1,5 В в базу схемы Дарлингтона, при этом способность выхода отводить ток для таких схем, как «сшестеренная» матрица Дарлингтона, составит 250 мА при 1 В. В серию ULN фирмы Sprague входят несколько сшестеренных и октальных матриц Дарлингтона в корпусах типа DIP.
9.10. Оптоэлектроника
В двух предыдущих главах мы использовали светодиоды и цифровые индикаторные приборы на светодиодах в различных примерах схем по мере необходимости. Светодиоды относятся к обширной области оптоэлектроники, которая включает в себя и устройства отображения на основе других технологий, а именно, жидких кристаллов, люминесцентных и газоразрядных приборов. Эта область включает также оптические электронные устройства, которые используются не только как индикаторы и дисплеи; к ним относятся оптроны, твердотельные реле, датчики положения («прерыватели»), диодные лазеры, матричные детекторы («приборы с зарядовой связью», ПЗС), электронно-оптические преобразователи и большое разнообразие компонентов, используемых в волоконной оптике.
Хотя мы будем и дальше использовать в качестве примеров различные «волшебные» приборы по мере их необходимости, нам представляется уместным обратиться к области оптоэлектроники, поскольку с ней связаны некоторые обсуждаемые здесь проблемы сопряжения логики.