Читаем Искусство схемотехники. Том 2 (Изд.4-е) полностью

Рис. 8.61.Диаграмма состояний.


Регистровые ПЛМ. Программируемые логические ИС (ПМЛ и ПЛМ, смотрите разд. 8.15) выпускаются как с вентилями, так и с синхронно тактируемыми D-триггерами на одном кристалле. Они известны как регистровые ПМЛ и ПЛМ и являются идеальными для построения последовательностных схем. Вы узнаете, как это делать в разд. 8.27.



8.19. Синхронизатор

Интересно использование триггеров в последовательных схемах в качестве синхронизаторов. Предположим, что в синхронную тактированную систему с триггерами поступает внешний управляющий сигнал и вы хотите использовать состояния этого сигнала для управления некоторым действием. Например, сигнал от измерительного прибора или экспериментальной установки может указывать, что данные готовы для передачи в ЭВМ. Так как экспериментальная установка и ЭВМ работают совершенно независимо друг от друга, т. е. асинхронно, необходимо иметь метод, который позволил бы установить порядок в работе двух систем.

Пример: синхронизатор импульсов. Еще раз рассмотрим в качестве примера схему, в которой триггер подавителя дребезга разрешает прохождение последовательности импульсов (разд. 8.16). Эта схема открывает вентиль всякий раз, когда ключ замкнут, независимо от фазы, подаваемой на него импульсной последовательности, в результате первый или последний импульс могут оказаться укороченными. Задача состоит в том, что замыкание ключа происходит асинхронно с последовательностью импульсов. В некоторых случаях важно, чтобы все тактовые импульсы имели только полные периоды, и тогда нужно использовать схему синхронизации, подобную представленной на рис. 8.62.




Рис. 8.62.Синхронизатор импульсной последовательности.


При нажатии кнопки «пуск» на выходе вентиля 1 возникает ВЫСОКИЙ уровень, но до появления заднего фронта очередного импульса на выходе Q триггера сохранится НИЗКИЙ уровень. В результате на выход вентиля 3 И-НЕ будут проходить только полные импульсы. На рис. 8.62 показаны временные диаграммы. Кривые со стрелками показывают, какие действия вызываются соответствующими перепадами. Как видно из диаграммы, изменения Q происходят сразу по заднему фронту входного сигнала.

Логические состязания и «всплески». Рассмотренный пример позволяет осветить тонкий, но предельно важный вопрос: что же произойдет, если для переброса триггера будет использоваться положительный перепад? Если вы тщательно проанализируете этот случай, то увидите, что с ПУСКОМ схемы все будет в полном порядке, но если кнопку СТОП нажать в тот момент, когда на входе действует НИЗКИЙ уровень, произойдет весьма неприятная вещь (рис. 8.63).



Рис. 8.63.Логические состязания могут вызвать появление коротких импульсов.


Так как последний (3) вентиль И-НЕ будет открыт до тех пор, пока на выходе триггера не установится НИЗКИЙ уровень (задержка для НС или LSTTЛ составляет приблизительно 20 нс), на выходе схемы возникает короткий «выброс» или «всплеск» (глитч). Это — классический пример «логического состязания». Принимая определенные меры предосторожности, подобных ситуаций можно избежать, что и показывает рассмотренный пример. «Всплески» — это страшная вещь, если они заведутся в ваших схемах. Кроме всего прочего, их невозможно увидеть на осциллографе и вы можете просто не узнать об их существовании. «Всплески» могут самым произвольным образом тактировать цепочки триггеров, они могут расширяться или сужаться до полного исчезновения, проходя через вентили и инверторы.

Упражнение 8.26. Покажите, что рассмотренная схема синхронизатора импульсов (рис. 8.62) не вырабатывает «всплески».

Упражнение 8.27. Спроектируйте схему, которая позволяет пропускать один полный отрицательный импульс (из входной последовательности импульсов) на выход после нажатия кнопки.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже