Кристаллы для бытового применения.
Полупроводниковая промышленность любит разрабатывать ИС для использования их в изделиях большого рынка. Вы можете получить однокристальные схемы для изготовления цифровых (иди «аналоговых») часов, таймеров, замков, калькуляторов, детекторов дыма, телефонных аппаратов, синтезаторов музыки, генераторов ритма и аккомпанемента и т. д. Что касается радиоприемников, телевизоров, компакт-дисков, то сейчас в этом отношении дело обстоит хуже из-за большой степени интеграции. Синтез речи (и особенно распознание речи) в последнее время получил некоторое развитие; вот почему лифты, автомобили и даже кухонные аппараты обращаются теперь к нам теми голосами, которые мы любим. Судя по всему, следующим большим шагом будет разработка эффективных автомобильных схем (для выполнения функций двигателя, систем предотвращения столкновений и т. п.).Микропроцессоры.
Самым выдающимся примером «чуда» БИС является микропроцессор (компьютер на кристалле). На одной вершине находятся мощные цифровые приборы, подобные 68020/30 и 80386/486 (32-разрядные быстрые процессоры с предвыборной команд, виртуальной памятью, мощнейшие арифметические сопроцессоры) и кристаллы, подобные MicroVAX, которые эмулируют существующие большие компьютеры. На другой вершине — однокристальные процессоры с различными функциями ввода, вывода и памяти, работающие самостоятельно. Например, один из последних образцов, это TLCS-90 фирмы Toshiba (рис. 8.86), представляющий маломощный КМОП микроконтроллер с 6-канальным 8-разрядным АЦП, встроенными таймерами, ОЗУ и ПЗУ, 20-двунаправленными цифровыми линиями ввода/вывода, последовательным портом и двумя портами для управления шаговыми двигателями. Этот прибор больше предназначен для задач управления, чем для проведения вычислений.Рис. 8.86.
Революция в микропроцессорах не проходила в одиночестве, и мы видим удвоение компьютерной мощности и размера памяти (в настоящее время 1 Мбит, сравните с 16 Кбит на кристалле на время написания первого издания этой книги) каждый год, в то же время цены развиваются драматически (рис. 8.87). Наряду с укрупнением и улучшением процессоров и памяти, последние работы сверхскоростных приборов и больших параллельных архитектур обещают более волнующие события в последующие годы.
Рис. 8.87.
Некторые типовые цифровые схемы
Благодаря усилиям полупроводниковой промышленности цифровые схемы удивительно легки и приятны. Почти нет случаев, когда приходится класть цифровую схему на «хлебную доску», как это часто происходит с линейными схемами. Вообще говоря, единственными серьезными проблемами являются синхронизация и шумы.
Мы в последующем расскажем об этом. Здесь уместно проиллюстрировать синхронизацию на нескольких примерах последовательностных схем. Некоторые из этих функций могут быть выполнены с помощью БИС, однако рассматриваемые реализации сделаны на хорошем уровне и позволяют проиллюстрировать, какого типа схемы можно строить с помощью имеющихся средств.
Изображенная на рис. 8.88 схема на каждые
Рис. 8.88.
Упражнение 8.35.
Путем вычисления истинного положительного значения, которое будет установлено на переключателях рис. 8.88, докажите истинность последнего утверждения.