Читаем Искусство схемотехники. Том 2 (Изд.4-е) полностью

Нельзя оставлять входы корпуса КМОП неподключенными. В этом случае схема время от времени может вести себя неправильно. Для того чтобы выявить неисправность, вы поставили щуп осциллографа в какую-то точку схемы и обнаружили там уровень 0 В, как и должно было быть. После этого в течение нескольких минут схема работает прекрасно, а затем снова сбивается! А произошло вот что: осциллограф разрядил неподключенный вход и потребовалось достаточно большое время, чтобы он смог снова зарядиться до порогового уровня. Дальше идет уже чистая фантастика: вы забыли подключить контактный вывод Ucc корпуса КМОП, но все-таки схема работает просто идеально! А дело все в том, что она получает питание по одному из своих логических входов (от входа через защитный диод к цепи Ucc корпуса). Вы можете не замечать этого в течение довольно длительного времени, пока не возникает ситуация, когда одновременно на всех входах корпуса будет действовать низкий уровень: кристалл потеряет питание и «забудет» свое состояние. В любом случае такой режим не может считаться нормальным, так как выходной каскад не запитан нужным образом и не в состоянии обеспечить номинальный ток. Сложность состоит в том, что подобная ситуация может давать о себе знать лишь эпизодически, поэтому вам придется пробежать не один круг, пока вы, наконец, додумаетесь, что же в действительности происходит.

Схемы, не требующие пояснений



8.36. Удачные схемы

Рис. 8.97 иллюстрирует ряд полезных применений цифровых схем.



Рис. 8.97.а — формирователь импульса по переднему фронту; б — формирователь импульса по спаду сигнала; в — формирователь импульсов по обоим фронтам;



Рис. 8.97. г — синхронный генератор последовательности из 2n импульсов;



Рис. 8.97. д — регулируемый формирователь импульса по переднему фронту;



Рис. 8.97. е — асинхронный генератор последовательности из 2n импульсов;



Рис. 8.97. ж - преобразование квадратурного кода в код реверсивного счетчика; используется для определения положения вращения по выходу преобразователя угла;



Рис. 8.97.  з — квадратурный генератор синхроимпульсов.



8.37. Негодные схемы

На рис. 8.98 показаны примеры классических ошибок, совершаемых разработчиками при построении цифровых схем.



Рис. 8.98. а — формирователь короткого импульса; б — хронометр с одиночной кнопкой ПУСК/ОСТАНОВ;



Рис. 8.98. в — схема для исключения каждого второго импульса из входной последовательности импульсов с длительностью 1 мкс (тонкий случай); г — ключ с подавителем дребезга;



Рис. 8.98. д — счетный частотомер с буферным регистром.

Дополнительные упражнения


(1) Покажите, как построить JK-триггер с помощью D-триггера и коммутатора-мультиплексора на 4 входа. Подсказка: используйте адресные входы коммутатора в качестве J и К.

(2) Разработайте схему, которая на 7-сегментном индикаторе будет показывать время (в миллисекундах), в течение которого была нажата кнопка. После каждого измерения устройство должно возвращаться в исходное положение. Воспользуйтесь генератором 1,0 МГц.

(3) Разработайте измеритель реакции. После того как «А» нажимает кнопку, загорается светодиод и счетчик начинает отсчет. Когда свою кнопку нажимает «В», светодиод гаснет, а на цифровом индикаторе воспроизводится время в миллисекундах. Позаботьтесь о том, чтобы схема работала нормально даже в том случае, когда «А» успевает отпустить свою кнопку до того, как «В» нажмет свою.

(4) Спроектируйте измеритель периода — устройство, измеряющее число микросекунд в одном периоде гармонического входного сигнала. Установите на входе компаратор на триггере Шмитта для формирования уровня ТТЛ; используйте тактовую частоту 1 МГц. Каждое очередное измерение должно начинаться после нажатия кнопки.

(5) Если вы еще не успели поставить буферный регистр, добавьте его к счетчику периода.

(6) Сделайте так, чтобы схема измеряла время десяти периодов. Кроме того, во время счета должен загореться светодиод.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже