Читаем Искусство схемотехники. Том 3 полностью

Ионизационная камера, пропорциональный счетчик, счетчик Гейгера. Эти детекторы состоят из цилиндрической (как правило) камеры, имеющей в диаметре несколько сантиметров, и проходящего в центре тонкого провода. Камера бывает заполнена каким-либо газом или смесью газов. С одной стороны имеется узкое «окошко» из материала, пропускающего интересующее вас излучение (пластик, бериллий и т. п.). Центральный провод имеет положительный потенциал и подключается к некоторой электронной схеме. Типичная конструкция такого детектора представлена на рис. 15.19.



Рис. 15.19.Пропорциональный счетчик частиц.


Когда в камере появляется квант излучения, он ионизирует атом, и тот испускает фотоэлектрон, последний затем отдает энергию, ионизируя атомы газа до тех пор, пока запас энергии не иссякнет. Оказывается, что электрон отдает около 20 В энергии в расчете на создаваемую им пару электрон — ион, следовательно, полный заряд, высвобожденный фотоэлектроном, пропорционален энергии, которую первоначально несло излучение. В ионизационной камере этот заряд собирается и усиливается усилителем заряда (интегрирующим), который работает также как фотоумножитель. Итак, выходной импульс пропорционален энергии излучения. Аналогичным образом работает пропорциональный счетчик, но на его центральном проводе поддерживается более высокое напряжение, следовательно, притягиваемые к нему электроны вызывают дополнительную ионизацию и результирующий сигнал получается большим. Эффект умножения заряда позволяет использовать пропорциональные счетчики при небольших значениях энергии излучения (порядка киловольт и ниже), когда ионизационные счетчики использовать невозможно. В счетчике Гейгера на центральном проводе поддерживается достаточно высокое напряжение, при котором любая начальная ионизация порождает большой одиночный выходной импульс (фиксированной величины). В данном случае вы получаете хороший большой выходной импульс, но не имеете никакой информации об энергии рентгеновского излучения.

В разд. 15.16 вы познакомитесь с интересным прибором, называемым анализатором ширины импульсов, который позволяет преобразовать последовательность импульсов различной ширины в гистограмму. Если ширина импульса является мерой энергии частицы, то с помощью такого прибора получим не что иное, как энергетический спектр! Итак, с помощью пропорционального счетчика (но не счетчика Гейгера) можно проводить спектрографический анализ излучения.

Подобные газонаполненные счетчики используют в диапазоне значений энергии от 1 кэВ до 100 кэВ. Пропорциональные счетчики обладают разрешающей способностью порядка 15 % при значении энергии 5,9 кэВ (распространенная для излучения калибровка, которую обеспечивает распад железа-55). Они недороги и могут иметь как очень большие, так и очень маленькие габариты, но для них требуется высокостабильный источник питания (умножение растет по экспоненциальному закону с напряжением), и они не отличаются высоким быстродействием (максимальная практически достижимая скорость счета грубо определяется величиной 25 000 имп./с).

Сцинтилляторы. Сцинтилляторы преобразуют энергию фотоэлектрона, электрона Комптона или пары электрон-позитрон в световой импульс, который воспринимается подключенным к прибору фотоумножителем. Распространенным сцинтиллятором является кристаллический иодид натрия (Nal) с примесью талия. Как и в пропорциональном счетчике, в этом датчике выходной импульс пропорционален поступающей энергии рентгеновского (или гамма) излучения, а это значит, что с помощью анализатора ширины импульсов можно производить спектрографический анализ (разд. 15.16).

Обычно кристалл Nal обеспечивает разрешение порядка 6 % при значении энергии 1,3 МэВ (распространенная для гамма-излучения калибровка, которую обеспечивает распад кобальта-60) и используется в энергетическом диапазоне от 10 кэВ до нескольких ГэВ. Световой импульс имеет длительность порядка 1 мкс, следовательно, эти детекторы обладают достаточно высоким быстродействием. Кристаллы Nal могут иметь различные размеры, вплоть до нескольких сантиметров, однако они сильно поглощают воду, следовательно, хранить их следует в закрытом виде. В связи с тем, что свет нужно каким-то образом устранять, кристаллы обычно поставляют в металлическом корпусе, имеющем окошко, закрытое тонкой пластинкой алюминия или бериллия, в котором находится интегральный фотоумножитель.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки