Читаем Искусство схемотехники. Том 3 полностью

Схема представляет собой аналог супергетеродинного приемника (см. разд. 13.16) с локальным генератором (ЛГ), для развертки которого используется пилообразное колебание, сгенерированное внутри схемы. По мере того как производится развертка частоты ЛГ, результаты ее смешения с различными входными частотами поступают на усилитель ПЧ и затем на фильтр. Например, представим, что для анализатора спектра промежуточная частота составляет 200 МГц, а частоту ЛГ можно разворачивать в диапазоне от 200 до 300 МГц. Когда частота ЛГ равна 210 МГц, входной сигнал с частотой 10 МГц (± ширина полосы пропускания фильтра ПЧ) проходит на детектор и создает напряжение вертикального отклонения на осциллографе. Сигналы с частотой 410 МГц (с «зеркальной» частотой) также будут проходить через эту цепочку, поэтому на входе установлен фильтр НЧ. В любой момент времени детектируются входные частоты, лежащие ниже частоты ЛГ на 200 МГц.

Реальные анализаторы спектра обладают большой гибкостью в отношении частоты развертки, центральной частоты, ширины полосы пропускания фильтра, масштаба изображения и т. д. Обычно диапазон входной частоты охватывает значения от герц до гигагерц, а избираемая полоса частот может иметь ширину от герц до мегагерц. Кроме того, в сложных современных анализаторах спектра предусмотрены такие возможности, как калибровка амплитуды, запоминание спектров для предотвращения мерцания при развертке, дополнительная память для выполнения сравнения и нормализации и отображение на экране цифровой информации. Эти замечательные анализаторы спектра позволяют рассматривать изменение фазы относительно частоты, формировать частотные маркеры, программировать работу от микропроцессорной шины IEЕЕ 488, а также включать следящие генераторы (для работы в увеличенном динамическом диапазоне), выполнять прецизионные измерения частоты в спектре, генерировать напряжения шумов для возбуждения исследуемых систем и даже выполнять усреднение сигнала (что особенно полезно при наличии шума).

Отметим, что анализатор спектра с разверткой частоты рассматривает в каждый момент времени только одну частоту и генерирует полный спектр путем развертки во времени. Иногда это может создавать большие неудобства, например при исследовании переходных процессов. Кроме того, при работе с узкой полосой пропускания скорость развертки должна быть небольшой. И наконец, в каждый момент времени используется только небольшая часть входного сигнала.

Эти недостатки анализаторов спектра с разверткой частоты устранены в анализаторах спектра, работающих в реальном времени. Здесь также существует несколько подходов. Один громоздкий метод основан на использовании набора узкополосных фильтров, которые позволяют выделять различные частоты диапазона одновременно. В последнее время большую популярность приобретают сложные анализаторы, основанные на методах цифрового анализа Фурье (в частности, используется известное быстрое преобразование Фурье). Эти приборы преобразуют аналоговый входной сигнал (после смешения и других процедур) в числа с помощью быстродействующего аналого-цифрового преобразователя. Затем специализированная вычислительная машина осуществляет соответствующие операции и формирует цифровой частотный спектр. Этот метод позволяет обрабатывать все частоты одновременно, в связи с этим он обладает очень высокой чувствительностью и высоким быстродействием и его можно использовать для анализа переходных процессов. Он особенно полезен при анализе тех сигналов, для которых быстродействие анализаторов спектра с разверткой частоты оказывается слишком низким. Кроме того, он позволяет выделить корреляцию между сигналами. В связи с тем что результаты представляются в цифровом виде, естественно в полной мере использовать усреднение сигналов, и эта возможность заложена в некоторых приборах, предназначенных для широкого применения.

Следует отметить, что цифровые анализаторы спектра имеют ограничения по скорости вычислений и обладают гораздо более узкой полосой пропускания, чем радиочастотные анализаторы спектра (ЛГ с разверткой частоты). Например, популярный анализатор типа 3561А фирмы HP работает на частотах от 125 мкГц до 100 кГц. Конечно, можно сделать так, чтобы анализатор работал с полосой 100 кГц, отцентрированной на более высокой частоте — преобразование этой полосы к более низкой частоте выполняется с помощью гетеродина.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки