Сколь бы большой ни была модель, от нее всегда мысленно можно отделить определенные части, р подобной конфигурации могут иметься линии раздела, которые бросаются в глаза при делении.
На рис. 7, 8, 9 и 10 показаны четыре различные фигуры, которые достаточно просты, но не настолько, чтобы их можно было обозначить одним словом. И хотя каждая фигура отличается от другой, тем не менее все они могут быть описаны с помощью какой-то одной знакомой фигуры.
На рис. 8 легко заметить естественные линии раздела на более мелкие элементы. Так можно отделить Т образный элемент верхней части, а основание в свою очередь разбить на два других Т - образных элемента.
Если теперь фигуру на рис. 7 рассматривать по тому же принципу деления, который применялся к фигуре на рис. 8, мы обнаружим, что и здесь в качестве единицы деления может быть использован тот же Т образный элемент.
При таких ограниченных условиях Т-образный элемент становится знакомым настолько, что с его помощью можно попытаться описать фигуры, показанные на рис. 9 и 10.
Если фигуры, изображенные на рис. 7 и 8, легко поддаются расчленению на Т-образные части, то этого нельзя сказать о фигурах, помещенных на рис. 9 и 10. Если бы мы вначале рассматривали рис. 10, вполне возможно, что Т-образный элемент никогда не превратился бы в знакомую нам фигуру.
На рис. 11, 12, 13, 14 показано деление каждой представленной выше фигуры на ряд простых Т - образных элементов. На рис. 7 и 8 знакомая фигура возникла скорее в результате непосредственного восприятия, а не за счет ее объяснения с помощью уже знакомых фигур. Но поскольку начало уже положено, число знакомых фигур может все более возрастать.
Хотя рис. 8 и подсказал возможность выделения Т-образного элемента, тем не менее это выделение произошло совершенно произвольно. Однажды созданный, Т-образный элемент утверждает себя, постоянно доказывая свою пригодность для объяснения других фигур, изображенных на рис. 11, 12, 13, 14. Эта универсальная применимость Т-образного элемента дает ему право на самостоятельное существование в качестве принципа объяснения.
Однако следует признать тот факт, что, каким бы удобным ни было деление фигур на Т-образные элементы, тем не менее нельзя утверждать, что они первоначально были составлены из таких Т-образных частей.
Если бы для описания геометрической фигуры, показанной на рис. 8, был выбран какой-то другой способ деления, то, вполне возможно, он оказался бы самым подходящим для описания именно этой конкретной фигуры, но был бы совершенно непригодным для создания элементов, пригодных для описания других фигур. Представленную на рис. 8 фигуру можно с одинаковым успехом описать как состоящую из горизонтального бруска, поддерживаемого в центре более короткой вертикальной стойкой, покоящейся в свою очередь на втором, более длинном, горизонтальном бруске, поддерживаемом двумя другими вертикальными стойками, чуть сдвинутыми от концов бруска к центру. Это описание в такой же степени правомерно, как и принцип деления на Т - образные элементы. Таким образом, хотя оба описания в равной степени адекватны, их полезность в целом в действительности может оказаться совершенно различной. Довольствоваться адекватностью одного описания за счет отказа от поисков других, возможно более адекватных, описаний — значит отвергать прогресс. Предположим, что при описании фигуры на рис. 8 мы выбрали принцип использования горизонтальных и вертикальных брусков, а затем, обратившись к рис. 7, мы обнаружили наличие Т-образного элемента. Одни просто примут это к сведению и этим ограничатся, в то время как другие вернутся к рис. 8, с тем чтобы выяснить возможность применения Т-образного элемента при описании представленной на нем фигуры. Казалось бы, здесь не может быть двух мнений, и подобное отношение к делу столь очевидно, сколь и необходимо, однако на практике, как правило, бывает иначе.
Многие ли сознательно пойдут на то, чтобы в свете новой информации пересмотреть те проблемы, которые уже нашли подходящее объяснение? Почему бы не применить Т-образный элемент, появившийся при одном способе деления, к описанию другой фигуры (например, на рис. 8), заменив ранее использованный здесь принцип деления? Значение Т-образного элемента возрастает с каждым новым удачным его применением, однако вначале его значение было ничуть не больше, чем любого другого элемента, полученного в ходе деления фигуры. Кто в силах отказаться от первоначального адекватного объяснения только для того, чтобы подобрать другое, равной степени адекватности?
Если же переосмысление исходной ситуации является для нас вполне естественным процессом, не менее естественной будет для нас и новая трактовка первоначальной фигуры (см. рис. 1), на основе Т-образных элементов, предложенная на рис. 15 и 16.