Что мы должны думать, сравнивая два абзаца? Дважды было подчёркнуто различие между интуицией и логикой, но на совершенно различных, хотя и имеющих друг к другу некоторое отношение, основаниях.
Это становится ещё более очевидным при рассмотрении примеров, данных Пуанкаре. Жозефу Бертрану, который совершенно очевидно имеет конкретные пространственные представления по всем вопросам, он противопоставляет Эрмита, чьи глаза «кажутся лишёнными контакта с миром» и который ищет «видение истины изнутри, а не снаружи» (там же).
Конечно, Эрмит не имел привычки думать конкретно. Он испытывал своего рода ненависть к геометрии и однажды, как ни странно, упрекнул меня в том, что я опубликовал мемуар по геометрии. Естественно, его собственные работы по конкретным вопросам редки и не относятся к числу его самых замечательных. Таким образом, в соответствии со вторым заявлением Пуанкаре Эрмит должен рассматриваться как математик с логическим складом ума.
Но считать Эрмита логиком! Ничто не может мне казаться менее правдоподобным. Казалось, что методы всегда рождались в его уме каким-то таинственным образом. На его лекциях в Сорбонне — которые мы слушали с неизменным восторгом — он любил начинать свои рассуждения словами: «Начнём с тождества…»; затем он писал формулу, точность которой можно было гарантировать, но ни происхождения которой, ни метода открытия он не объяснял — и мы не могли о них догадаться. Это качество его ума отчётливо проявилось при открытии им знаменитых квадратичных форм; в этом вопросе возможны два случая и очевидно, что их свойства совершенно различны. В первом случае «приведение» было известно со времён Гаусса. Казалось, что никому не могло прийти в голову применить ко второму случаю выкладки, используемые в первом, так как они, видимо, не имели с ним ничего общего; казалось совершенно абсурдным, что они могут и в этом случае привести к решению; и тем не менее, посредством своего рода колдовства, они к нему привели. Механизм этого исключительного явления был несколькими годами позднее частично объяснён с помощью геометрической интерпретации (данной, естественно, не Эрмитом, а Клейном); но для меня она стала совершенно ясной лишь после того, как я познакомился с соответствующей концепцией Пуанкаре, в одной из его первых заметок[110]
. Я не могу себе представить более совершенного типа интуитивного ума, чем Эрмит. Итак, пример Эрмита неукоснительно показывает, что два определения интуиции и логики, данные Пуанкаре, не совпадают, по крайней мере не вполне совпадают, что в какой-то мере признал сам Пуанкаре именно в связи с примером Эрмита.Двумя немецкими математиками, которых сравнивает Пуанкаре, являются Вейерштрасс и Риман. Несомненно, что, как заключает Пуанкаре, Риман — типичный интуитивист, а Вейерштрасс — типичный логик. Но по поводу этого последнего Пуанкаре замечает: «Можно просмотреть все его книги, и вы не найдёте в них ни одного чертежа». Здесь допущена одна фактическая ошибка[111]
. Действительно, почти ни в одном из мемуаров Вейерштрасса нет чертежей; существует лишь одно исключение, но оно существует и находится в одном из его самых замечательных и наиболее сжатых произведений, которое производит наиболее яркое впечатление совершенства: я говорю о его фундаментальном методе в вариационном исчислении. Вейерштрасс там помещает один единственный чертёж[112] и, опираясь на него, всё дальнейшее выводит глубоко логическим методом, который является, несомненно, ему свойственным; так что достаточно каждому, кто хорошо знает математические методы, бросить взгляд на этот чертёж, чтобы восстановить весь ход рассуждений. Но для построения этой фигуры требовалась, естественно, начальная интуиция. Это было тем более трудным и гениальным актом, что требовалось порвать с общепринятыми методами, которые непрерывно приносили всё новые успехи со времён изобретения исчисления бесконечно малых; в частности, Лагранж успешно применил исчисление бесконечно малых для получения первой части решения, но больше никому не удавалось его правильно дополнить. Вейерштрасс показал, что для получения результата надо полностью отойти от традиционных методов и оперировать непосредственно.Как видно, в действительности этот случай является ярким примером того общего факта, что логика идёт вслед за начальной интуицией.
Итак, мы вынуждены признать, что не существует единого определения интуиции, противоположной логике, но что их существует по крайней мере два. Чтобы разобраться в этом, почему бы не воспользоваться результатами нашего анализа этих явлений?