В качестве замены высокогорючего и недостаточно теплостойкого и формоустойчивого пенополистирола был выбран жесткий напыляемый пенополиуретан, обладающий большей прочностью, чем заливочные ППУ-305 и ППУ-314, а кроме того позволяющий изготовить более однородную основу для фрагментов значительной величины{114}
.Оборудование, технология напыления и рецептуры напыляемых пенополиуретанов были разработаны в СССР еще в 1970-е гг.{115}
. В настоящее время напыляемые пенополиуретаны различных марок широко применяются для тепло– и гидроизоляции в строительстве и промышленности.На базе ЗАО «БЛОКФОРМ» (г. Владимир) были проведены экспериментальные работы по изготовлению основы композиции XVIII в. «Избранные святые» из Спасской церкви пос. Морозовица близ Великого Устюга. Для изготовления основы был использован ППУ-17Н. Эта марка напыляемого пенополиуретана в настоящее время нашла применение в строительстве, в холодильной технике, для теплоизоляции и герметизации стыков. Его основные достоинства, по свидетельству разработчиков, – технологичность, низкая коррозионная активность, высокая адгезия к сухим и умеренно влажным поверхностям, отличные прочностные характеристики, длительный срок службы – не менее 40 лет{116}
.В процессе эксплуатации пенопласты, как и полимеры, из которых они изготовлены, подвержены процессам старения под воздействием внешних факторов (кислорода воздуха, солнечной радиации, перепадов температуры и влажности и пр.). На первоначальной стадии, через примерно 10 лет после изготовления, прочность пенопластов (на сжатие) существенно возрастает. По данным М. А. Дементьева для ППУ-17Н она возрастает на 20–40 % по сравнению с первоначальной прочностью{117}
. Это указывает на то, что в первые десять лет преобладают процессы сшивки полимерной матрицы. Затем начинается постепенное медленное снижение прочности, обусловленное преобладанием процессов термо-окислительной деструкции полимера; примерно через тридцать лет она достигает первоначального значения. По оценке М. А. Дементьева, долговечность в ненагруженном состоянии пенополиуретана ППУ-17Н, применяемого в строительстве, то есть период времени, в течение которого прочность и другие параметры сохраняются на допустимом для эксплуатации уровне, составляет не менее 80 лет{118}. При этом отмечается также высокая формостабильность ППУ: изменение линейных размеров как в период доотверждения, так и в период, в который преобладают процессы термоокислительной деструкции, не превышает 1 %.Следует, вместе с тем, заметить, что пока пенополиуретан не доотвержден, температура размягчения его, как показывают, в частности, дилатометрические испытания, – 70–90°С, существенно ниже эксплуатационной, которая указана в техническом паспорте (120°С). Это означает, что пенополиуретан в первые 10 лет более подвержен феномену холодного течения под нагрузкой, чем после окончательного формирования трехмерной структуры.
Наиболее разрушительное воздействие на пенополиуретан оказывает ультрафиолетовое излучение, которое, впрочем, вызывает лишь эрозию поверхности. Эту эрозию можно предотвратить, защитив поверхность изделия слоем покраски, например, акриловой.
Экспериментальные работы по напылению основ из пенополиуретана марки ППУ-17 Н выявили значительные усадки пенополиуретана непосредственно после напыления. Для снижения усадочных напряжений рекомендуется проведение работ и последующее выдерживание изделия в течение трех дней при температуре около 20о
С. Вместе с тем, так как в настоящее время не представляется возможным оценить значения релаксационных напряжений, зависящие от множества факторов, и деформаций пенополиуретановых основ, которые они могут вызвать, то для предотвращения последних необходимо армировать основы по всей площади, жестко закрепив на них фрагменты живописи. Армирующая конструкция должна быть при этом изготовлена из тех материалов, к которым пенополиуретан имеет хорошую адгезию, например из дерева или дюралюминия.Очевидным достоинством метода напыления является возможность изготовления с его использованием основ для криволинейных фрагментов. В этом случае необходимо изготовить криволинейную армирующую конструкцию.
К. И. Маслов, В. А. Парфенов, Ф. В. Гузанов. Мониторинг фресок с использованием трехмерного лазерного сканирования. Предварительные результаты