Читаем Истина и красота. Всемирная история симметрии. полностью

Поскольку мальчика заставляли почти постоянно лежать, он занимал себя решением математических задач, просто чтобы убить время. «Мне приходилось дни напролет лежать в шезлонге, — писал он позднее, — и я отчаянно пытался придумать, как построить треугольник по трем заданным высотам». Высоты треугольника — это три линии, которые проходят через вершину и пересекают противоположную сторону под прямым углом. Если треугольник дан, то найти его высоты легко. Решить обратную задачу определенно труднее.

После выписки из санатория Йена продолжал размышлять о математике. В 1915 году он поступил в Лютеранскую гимназию в Будапеште, где в то время уже учился другой мальчик, которому предстояло стать одним из ведущих мировых математиков, — Янош (позднее — Джон) фон Нейман. Однако из знакомство оставалось лишь весьма поверхностным, поскольку фон Нейман предпочитал держаться особняком.

В 1919 году Венгрию наводнили коммунисты, и Вигнеры бежали в Австрию, вернувшись в Будапешт позднее, в том же году, когда коммунистов оттуда выбили. Все семейство перешло в лютеранство, но на Йену это большого влияния не оказало — как он говорил позднее, потому что он был «лишь умеренно религиозен». В 1920 году Йена закончил школу одним из лучших в классе. Он намеревался стать физиком, но отец хотел, чтобы он вступил в семейный кожевенный бизнес. Поэтому вместо того, чтобы получить диплом по физике, Йена стал изучать химическую инженерию: отец полагал, что она будет способствовать бизнесу. Он поступил на первый курс Будапештского технического института, а потом перешел в Высшую техническую школу в Берлине. В конце концов он стал проводить большую часть ценного времени в химической лаборатории, где ему нравилось, и меньшую часть — на теоретических занятиях.

Тем не менее Йена не оставлял мыслей о физике. Берлинский университет находился неподалеку, а кого там можно было увидеть, как не Планка и Эйнштейна вкупе с другими знаменитостями? Йена не преминул воспользоваться этой географической близостью и стал ходить на лекции бессмертных. Он закончил свою диссертацию об образовании и распаде молекул и, как и планировалось, начал работать на кожевенном заводе. Как и следовало ожидать, идея оказалась не слишком удачной. «Дела мои в дубильне шли не очень хорошо… Я чувствовал себя там не в своей тарелке… У меня не было ощущения, что это моя жизнь». Его жизнью были математика и физика.

В 1926 году с ним связался кристаллограф из Института Кайзера Вильгельма, которому требовался ассистент. Обязанности соединяли в себе в химическом контексте оба основных интереса Вигнера. Эта работа оказала огромное влияние на его карьеру, а тем самым и на развитие ядерной физики, поскольку познакомила Вигнера с теорией групп — математикой симметрии.

Первые существенные применения теории групп к физике состояли в классификации всех 230 возможных кристаллических структур. Вигнер писал: «Я получил письмо от кристаллографа, который хотел найти ответ на вопрос, почему положения, которые занимают атомы в кристаллической решетке, соответствуют осям симметрии. Кроме того, он сказал мне, что это должно иметь отношение к теории групп и что мне следует прочитать книгу по теории групп, а после этого найти ответ и сообщить ему».

Возможно, Антал Вигнер был в не меньшем ужасе, чем его сын, от сомнительных успехов последнего в области кожевенного дела, а потому позволил ему стать асситентом кристаллографа. Йена начал с чтения нескольких статей Гайзенберга по квантовой теории и развил теоретический метод вычисления спектра атома с тремя электронами. Он также понял, что этот метод может стать невероятно сложным, когда число электронов превысит три. В этот момент он обратился за советом к своему старому знакомому фон Нейману, который предложил ему почитать о теории представлений групп. Эта область математики в избытке содержала известные в то время алгебраические концепции и сложные методы, в особенности — матричную алгебру. Однако благодаря своим занятиям кристаллографией и близкому знакомству с основным на тот момент учебником по алгебре — Lehrbuch der AlgebraГенриха Вебера — Вигнер преодолел матрицы без проблем.

Совет фон Неймана оказался очень хорош. Если атом обладает некоторым числом электронов, то, поскольку все электроны тождественны, атом «не знает», какой электрон какой. Другими словами, уравнения, описывающие излучение, испущенное данным атомом, должны быть симметричны относительно всех перестановок его электронов. Используя теорию групп, Вигнер разработал теорию спектра атомов с любым числом электронов.

До этого момента его работа шла в традиционном русле классической физики. Но все по-настоящему захватывающее творилось в квантовой теории. Тогда Вигнер и принялся за главный труд своей жизни — применение теории представлений групп к квантовой механике.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии