Читаем Истина и красота. Всемирная история симметрии. полностью

Лагранж добился гораздо более глубокого понимания методов эпохи Возрождения, чем сами их изобретатели; он даже доказал, что найденную им общую схему, объяснявшую их успехи, нельзя распространить на степени пять и выше. Тем не менее он не смог сделать следующего шага — выяснить, возможно ли какое-нибудьрешение в этих случаях. Вместо этого он сообщает нам, что его результаты «окажутся полезными для тех, кто захочет заняться решением уравнений высших степеней, поскольку снабдят их различными взглядами на этот вопрос и, главное, предохранят от большого числа ложных шагов и попыток».

Лагранж обратил внимание, что все специальные приемы, которые использовали Кардано, Тарталья и другие, основывались на одном методе. Вместо того чтобы непосредственно искать корни заданных уравнений, они пытались свести задачу к решению некоторого вспомогательного уравнения, корни которого связаны с исходными, однако отличаются от них.

Вспомогательное уравнение в случае кубического уравнения было более простым — квадратным. Эту «разрешающую квадрику» можно было решить вавилонскими методами; решение же кубического уравнения затем восстанавливалось путем извлечения кубического корня. Именно такова структура формулы Кардано. Для уравнения четвертой степени вспомогательное уравнение тоже было более простым — кубическим. Эту «разрешающую кубику» можно было решить методом Кардано; решение же уравнения четвертой степени затем восстанавливалось извлечением корня четвертой степени — другими словами, кратным извлечением квадратного корня. Именно такова структура формулы Феррари.

Можно представить себе растущее воодушевление Лагранжа. Если подобная закономерность сохранится, то уравнение пятой степени будет иметь «разрешающую квадрику», которую можно будет решить методом Феррари, а затем извлечь корень пятой степени. И процесс может продолжиться: уравнение шестой степени будет иметь разрешающую квинтику, которую можно будет решить с помощью того, что получит известность как метод Лагранжа. Он сможет решить уравнения любойстепени.

Суровая реальность вернула его на землю. Разрешающее уравнение для уравнения пятой степени оказалось не квартикой, а уравнением более высокойстепени — шестой. Тот самый метод, который позволил упростить кубику и квартику, привел к усложнениюквинтики.

Достичь прогресса в математике посредством замены сложной задачи на еще более сложную невозможно. Объединенный метод Лагранжа отказал на уравнении пятой степени. Тем не менее Лагранж не доказал, что уравнение пятой степени неразрешимо, так как могли существовать и какие-то другие методы.

В самом деле, почему бы и нет?

Для Лагранжа это был риторический вопрос. Однако один из его последователей отнесся к этому вопросу серьезно и ответил на него.


Его звали Паоло Руффини, и когда я говорю, что он «ответил» на риторический вопрос Лагранжа, я слегка лукавлю. Он полагал, что ответил, и его современники не обнаружили в его ответе ничего неверного — отчасти потому, что никогда не воспринимали его работы настолько серьезно, чтобы в самом деле подвергнуть их всесторонней проверке. Руффини прожил свою жизнь в убеждении, что доказал неразрешимость уравнения пятой степени в радикалах. Только после его смерти оказалось, что в его доказательстве имеется значительный пробел. Его легко было просмотреть среди многих и многих страниц запутанных вычислений; проблема состояла в некотором «очевидном» допущении — таком, что он даже не заметил, что это предположение делалось.

Как знает из собственного горького опыта каждый профессиональный математик, очень трудно заметить, что вы делаете неявное предположение, — трудно в первую очередь потому, что оно делается неявно.

Руффини родился в 1765 году в семье врача. В 1783-м он поступил в университет Модены, где изучал медицину, философию, литературу и математику. Геометрии он учился у Луиджи Фантини, а анализу — у Паоло Кассиани. Когда Кассиани переехал, чтобы занять при семействе Эсте должность управляющего их обширными владениями, Руффини — в тот момент еще студент — взял на себя курс анализа, который читал Кассиани. В 1788 году он получил степень по философии, медицине и хирургии, а степень по математике — в 1789-м. Вскоре после этого он сменил на профессорской должности Фантини, зрение которого быстро ухудшалось.

Ход его научных занятий был прерван течением мировых событий. Разбив в 1796 году войска Австрии и Сардинии, Наполеон Бонапарт обратил свой взгляд на Турин и захватил Милан. Вскоре он оккупировал Модену, и Руффини пришлось принять участие в политической деятельности. Вначале он собирался вернуться в университет в 1798 году, но по религиозным соображениям отказался приносить присягу республике. Воспоследовавшая незанятость оставила ему больше времени на исследования, и он целиком сосредоточился на все еще не урегулированном вопросе об уравнениях пятой степени.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии