В этой башне по одной комнате на этаже, причем лестница связывает ее с комнатой этажом выше. В каждой комнате имеется большой мешок. Если открыть мешок, оттуда разлетаются миллионы алгебраических формул, заполняя весь этаж. На первый взгляд у этих формул нет никакой специальной структуры, и кажется, что их случайным образом понадергали из разных алгебраических текстов. Некоторые формулы короткие, некоторые длинные; некоторые простые, некоторые исключительно сложные. При более тщательном рассмотрении, однако, у них обнаруживаются родственные черты. Формулы в каждом мешке имеют массу общих свойств. У формул из мешка этажом выше другие общие свойства. Чем выше по башне мы поднимаемся, тем более сложными становятся формулы в мешках.
Мешок на первом этаже содержит все формулы, которые можно построить, взяв коэффициенты уравнения и складывая их друг с другом, вычитая, умножая, деля — снова и снова, сколько угодно раз. В мире алгебраических формул, коль скоро вы задались коэффициентами, все эти «безобидные» комбинации прилагаются, можно сказать, практически бесплатно.
Чтобы забраться по лестнице на этаж выше, надо взять какую-нибудь формулу из мешка и использовать ее для построения
Итак, вы выбрали какой-то корень; теперь, поднявшись на второй этаж, вы находите второй мешок, содержимое которого исходно совпадает с содержимым мешка на первом этаже. Но вы открываете мешок и швыряете в него новый радикал.
Формулы
Будем действовать точно так же, чтобы подняться на третий этаж. Снова выбираем некоторую формулу из нового мешка — строго одну — и строим новый радикал, извлекая корень некоторой (простой) степени из этой формулы. Тащим новый радикал по лестнице на третий этаж, засовываем его в мешок и ждем, пока формулы исполнят свои брачные игры.
И так далее. Каждый новый этаж означает новый радикал, и в новом мешке появляются новые формулы. На каждом шаге все эти формулы строятся из коэффициентов, к которым добавлен какой-либо радикал из числа тех, что были построены ранее.
Наконец мы на верхнем этаже башни. Миссия выполнена, исходное уравнение решено в радикалах — при условии, что, ощупав мешок на чердаке, мы найдем там по крайней мере один из корней нашего уравнения.
Подобных башен может быть много, в зависимости от выбираемых на каждом шаге формул и радикалов. Большинство обманывают наши ожидания и там не найти и намека на искомый корень. Но если миссия выполнима, если некоторая формула, построенная из последовательных радикалов, дает решение, то на чердаке в соответствующей башне действительно найдется корень. Ибо формула в точности говорит нам, как получить этот корень, последовательно добавляя радикалы. Другими словами, она сообщает нам, как именно построить башню.
В терминах таких башен можно интерпретировать классические решения уравнений третьей и четвертой степеней и даже вавилонское решение квадратных уравнений. Начнем с кубического уравнения, поскольку оно уже достаточно сложно, чтобы быть репрезентативным, но еще достаточно просто, чтобы оставаться наглядным.
В башне Кардано только три этажа.
Мешок на первом этаже содержит коэффициенты и все их комбинации.
Лестница, ведущая на второй этаж, требует извлечения квадратного корня. Весьма конкретного квадратного корня из вполне определенной формулы из первого мешка. Мешок на втором этаже содержит все комбинации этого квадратного корня и коэффициентов.
Лестница на третий этаж — на чердак — требует кубического корня, причем снова вполне конкретного. Это кубический корень из определенной формулы, включающей коэффициенты и тот квадратный корень, который уже использовался, чтобы подняться на один этаж. Содержит ли мешок на чердаке какой-либо корень нашего кубического уравнения? Да, и доказательство состоит в формуле Кардано. Подъем на башню увенчался успехом.
Башня Феррари выше — в ней пять этажей.