Цвет явным образом не упоминается в качестве структуры, так что окрашивание треугольника не имеет значения. Не то чтобы оно было под запретом — просто оно не составляет различия для геометрических целей.
Поворот треугольника на некоторый угол, однако, действительно сохраняет по крайней мере кое-что из структуры. Если вырезать равносторонний треугольник из картона, положить его на стол, а затем поворачивать, то он по-прежнему будет выглядеть как треугольник. У него будут три стороны, причем прямые, а их длины не изменятся. Однако положение треугольника на плоскости может оказаться иным, в зависимости от угла, на который его повернули.
Если я поверну треугольник, например, на прямой угол, то результат будет отличаться от первоначального. Стороны будут смотреть в других направлениях. Если вы закроете глаза, пока я буду его поворачивать, то, открыв их, сможете определить, что треугольник был повернут.
Поворот на прямой угол не является симметрией равностороннего треугольника.
Но если я поверну треугольник на 120°, вы не заметите никакой разницы между «было» и «стало». Чтобы показать, что я имею в виду, я тайно помечу углы кружками различного типа, так что мы сможем следить за тем, что куда отправляется. Эти кружки — только для нашей ориентации, они не составляют часть структуры, которая должна быть сохранена. Если вы закрываете глаза на кружки, если наш треугольник настолько лишен свойств, насколько это полагается всякому добропорядочному эвклидову объекту, то повернутый треугольник выглядит в точности как исходный.
Поворот на 120° является симметрией равностороннего треугольника.
Другими словами, поворот на 120° есть симметрия равностороннего треугольника. Преобразование (поворот) сохраняет структуру (форму и расположение).
Оказывается, что у равностороннего треугольника имеется ровно шесть различных симметрий. Вторая — это поворот на 240°. Еще три — отражения, под действием которых один из углов треугольника остается на месте, а два других меняются местами. А в чем состоит шестая симметрия?
Эта тривиальная симметрия называется
Шесть симметрий равностороннего треугольника.
Для равностороннего треугольника можно представлять себе единичный элемент как вращение на 0°. На рисунке изображены результаты применения шести симметрий к нашему равностороннему треугольнику. Это в точности шесть различных способов, которыми вырезанный из картона и вынутый из плоскости треугольник можно наложить на его исходное положение. Пунктирные линии показывают, где надо расположить зеркало, чтобы получить требуемое отражение.
Теперь я собираюсь убедить вас в том, что симметрии — это часть алгебры. Для этого я сделаю то же, что сделал бы любой алгебраист: выражу все в символах. Обозначим шесть симметрий буквами