Читаем Истина и красота. Всемирная история симметрии. полностью

Способ, которым я представил эти доказательства, скрывает более глубокую структуру. С более абстрактной точки зрения решения этих двух задач Античности Ванцелем сводятся к симметрийным аргументам: группы Галуа уравнений, которые отвечают геометрии, имеют «неправильную» структуру для построений циркулем и линейкой. Ванцель был хорошо знаком с группами Галуа и в 1845 году нашел новое доказательство того факта, что некоторые алгебраические уравнения нельзя решить в радикалах. Доказательство близко следовало идеям Руффини и Абеля, но позволяло упростить эти идеи и выразить их более ясно. Во введении Ванцель пишет:

Хотя доказательство [Абеля] в итоге является верным, оно представлено в настолько сложном и неясном виде, что не получило всеобщего признания. За много лет до того Руффини… рассматривал тот же вопрос еще более туманным способом… Размышляя о работах этих двух математиков, мы пришли к доказательству, представляющемуся настолько строгим, что оно устраняет все сомнения касательно этой важной части теории уравнений.


Единственной остающейся задачей Античности была квадратура круга, сводящаяся к построению отрезка, длина которого была бы точно равна π. Доказать невозможность такого построения оказалось намного сложнее. Почему? Дело не в том, что у числа πминимальный многочлен неправильной степени, а в том, что, как оказалось, у него вообще нет минимального многочлена — нет такого полиномиального уравнения с рациональными коэффициентами, корень которого был бы равен π. Таким корнем может быть число, сколь угодно близкое к π, но невозможно получить в качестве корня точно число π.

Математики девятнадцатого столетия осознавали, что различие между рациональными и иррациональными числами можно было с пользой для себя сделать более тонким. Имелись иррациональные числа различных видов. Относительно «ручные» иррациональности, подобные √2, нельзя точно выразить в виде дроби (т.е. записать как рациональное число), но их можно представить, используярациональные числа. Они удовлетворяют уравнениям, коэффициенты которых — рациональные числа; в случае числа √2 это уравнение x 2 − 2 = 0. Про такие числа говорят, что они алгебраические. Но математики осознали, что в принципе могут существовать иррациональные числа, не являющиеся алгебраическими, связь которых с рациональными числами намного менее прямая, чем для алгебраических чисел. Они во всем выходили за границы царства рациональности.

Самый первый вопрос состоял в том, действительно ли такие «трансцендентные» числа существуют [31]? Греки полагали, что всечисла могут быть рациональными, пока Гиппас не развеял эти иллюзии, а Пифагор, как говорят, пришел в такое негодование, что велел выбросить за борт гонца, принесшего эту весть. (Более вероятно все же, что Гиппаса просто изгнали из пифагорейской школы.) Математикам девятнадцатого столетия было известно, что всякая вера в то, что все числа являются алгебраическими, равным образом должна была привести к трагедии, но в данном случае они довольно долго не могли найти своего Гиппаса. Все, что требовалось, — это доказать, что некоторое конкретное вещественное число — разумным кандидатом было число π —не является алгебраическим. Но уже достаточно трудно доказать, что некоторое число — например, π —иррационально, для чего надо убедиться в том, что не существует ни одной пары целых чисел, которая давала бы πв результате деления одного числа на другое. Чтобы доказать, что некоторое число не является алгебраическим, надо заменить эти гипотетические целые числа на все возможные уравнения любой степени, а затем прийти к противоречию. Дело сильно запутывается.

Первый значительный прогресс был достигнут немецким математиком и астрономом Иоганном Ламбертом в 1768 году. В работе о трансцендентных числах он доказал, что πиррационально, и его метод проложил дорогу всем последующим исследователям. Ламберт существенно использовал идеи из анализа, в особенности концепцию интеграла. (Интеграл заданной функции представляет собой функцию, скорость изменения которой есть исходная функция.) Исходя из предположения, что πв точности равняется некоторой дроби, Ламберт предложил вычислить достаточно сложный интеграл [32]изобретенный им специально для этой цели, куда входили не только многочлены, но и тригонометрические функции. Имеются два разных способа вычисления этого интеграла. Один из них дает в ответе нуль. Другой показывает, что ответ неравен нулю.

Перейти на страницу:

Все книги серии Элементы

Мозг и душа. Как нервная деятельность формирует наш внутренний мир
Мозг и душа. Как нервная деятельность формирует наш внутренний мир

Знаменитый британский нейрофизиолог Крис Фрит хорошо известен умением говорить просто об очень сложных проблемах психологии – таких как психическая деятельность, социальное поведение, аутизм и шизофрения. Именно в этой сфере, наряду с изучением того, как мы воспринимаем окружающий мир, действуем, делаем выбор, помним и чувствуем, сегодня и происходит научная революция, связанная с внедрением методов нейровизуализации. В книге "Мозг и душа" Крис Фрит рассказывает обо всем этом самым доступным и занимательным образом.УДК 159.9:616.89ББК 88.3+56.14ISBN: 978-5-271-28988-0 (ООО "Издательство Астрель")© Chris D. Frith, 2007All Rights Reserved. Authorised translation from the English language edition published by Blackwell Publishing Limited. Responsibility for the accuracy of the translation rests solely with The Dynasty Foundation and is not the responsibility of John Blackwell Publishing Limited. No part of this book may be reproduced in any form without the written permission of the original copyright holder, Blackwell Publishing Limited.© Фонд Дмитрия Зимина "Династия", издание на русском языке, 2010© П. Петров, перевод на русский язык, 2010© А. Бондаренко, художественное оформление, макет, 2010© ООО "Издательство Астрель", 2010Издательство CORPUS ®Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Кристофер Фрит , Крис Фрит

Биология, биофизика, биохимия / Биология / Психология / Образование и наука
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Мутанты
Мутанты

Для того, чтобы посмотреть, как развивается зародыш, Клеопатра приказывала вспарывать животы беременным рабыням. Сегодня мы знаем о механизмах, которые заставляют одну-единственную клетку превращаться сначала в эмбрион, после – в ребенка, а затем и во взрослого человека, несравненно больше, чем во времена жестокой египтянки, однако многие вопросы по-прежнему остаются без ответов. Один из основных методов исследовать пути формирования человеческого тела – это проследить за возникающими в этом процессе сбоями или, как говорят ученые, мутациями. Именно об этих "неполадках", приводящих к появлению сиамских близнецов, двухголовых ягнят и прочих мутантов, рассказывает в своей увлекательной и порой шокирующей книге британский биолог Арман Мари Леруа. Используя истории знаменитых "уродцев" в качестве отправной точки для своих рассуждений, автор подводит читателя к пониманию сложных законов, позволяющих человеческим телу на протяжении многих поколений сохранять относительную стабильность, оставаясь при этом поразительно многообразным.УДК 575-2ББК 28.704ISBN 978-5-271-24665-4 (ООО "Издательство Астрель")© Armand Marie Leroi, 2003© Фонд Дмитрия Зимина "Династия", российское издание, 2009© Е. Година, перевод на русский язык, 2009© А. Бондаренко, оформление, 2009Фонд некоммерческих программ "Династия" основан В 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании "Вымпелком". Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение. В рамках программы по популяризации науки Фондом запущено несколько проектов. В их числе – сайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект "Библиотека "Династии" – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными. Книга, которую вы держите в руках, выпущена в рамках этого проекта. Более подробную информацию о Фонде "Династия" вы найдете по адресу:WWW.DYNASTYFDN.RU

Арман Мари Леруа

Биология, биофизика, биохимия

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии