Читаем Истина и красота. Всемирная история симметрии полностью

Феррари сохранял хладнокровие и заявлял, что в любом случае начать надо с того, что решил кубическое уравнение не Тарталья, а дель Ферро. Коль скоро дель Ферро не проявлял никакой озабоченности по поводу неоправданных утверждений Тартальи об авторстве, что же тогда мешало Тарталье вести себя аналогичным образом? Это был сильный ход, и Тарталье, возможно, пришлось это признать, потому что он подумывал отказаться от участия в состязании. Однако он не стал этого делать, по всей вероятности, из-за отцов своего родного города Брешиа. Тарталья добивался там кафедры, и его местные покровители могли пожелать посмотреть, как он себя покажет.

Как бы то ни было, Тарталья согласился на участие в дебатах, которые состоялись в августе 1548 года перед большим скоплением народа в Миланской церкви. Не сохранилось никаких отчетов о происшедшем, за исключением нескольких указаний у Тартальи, который пишет, что встреча прервалась, когда приближался решающий раунд. Это может служить намеком на то, что диспут оказался не слишком захватывающим. Кажется, однако, что Феррари умело одержал победу, потому что после этого ему предложили несколько заманчивых должностей, из которых он выбрал пост руководителя налогового управления при правителе Милана и вскоре стал очень богат. Тарталья, напротив, никогда не утверждал, что выиграл дебаты, не получил работу в Брешии, и на его долю достались лишь горькие упреки и обвинения.

Тарталья не мог знать, что Кардано и Феррари заранее продумали совершенно иную линию защиты, для чего отправились в Болонью и изучили там бумаги дель Ферро. Там содержалось первое настоящее решение кубического уравнения, и в последующие годы оба они утверждали, что источником материала, включенного в «Великое искусство», послужил не секрет, доверенный Кардано Тартальей, а исходные записи дель Ферро. Ссылка на Тарталью включалась только для пояснения того, как именно сам Кардано узнал о работе дель Ферро.

У этой истории имеется и последний поворот сюжета. Вскоре после выхода второго издания «Великого искусства», в 1570 году, инквизиция заключила Кардано в тюрьму. Причина ареста могла быть связана с обстоятельством, ранее казавшимся совершенно невинным, — не с содержанием книги, а с ее посвящением. Кардано в свое время решил посвятить ее относительно малоизвестному интеллектуалу Андреасу Осиандеру — второстепенному деятелю Реформации, на которого, однако, пало сильное подозрение в авторстве анонимного предисловия к книге «О вращении небесных сфер» Николая Коперника — первой книге, где говорилось, что планеты движутся не вокруг Земли, а вокруг Солнца. Церковь считала эти взгляды еретическими и в 1600 году сожгла Джордано Бруно за то, что тот продолжал их отстаивать, подвесив его раздетого догола и с кляпом во рту вниз головой на столбе на рыночной площади в Риме. В 1616 году, а потом еще раз, в 1633-м, по сходным причинам она доставила немало неприятностей Галилею, однако на сей раз инквизиция удовлетворилась помещением ученого под домашний арест.


Чтобы оценить, чего же достигли Джироламо и его соотечественники, нам надо вернуться к вавилонским табличкам, которые объясняют, как решать квадратные уравнения. Если следовать их предписанию, но выразить все шаги вычисления в современных обозначениях, мы увидим, что вавилонский писец на самом деле сообщал нам, что решение квадратного уравнения x2 − ax = b есть

Эта формула эквивалентна той, которую наизусть знает каждый школьник и которая в наши дни присутствует во всех справочниках.

Решение кубического уравнения, данное во времена Возрождения, выглядит похоже, но посложнее. В современных обозначениях оно имеет следующий вид. Пусть x3 + ax = b. Тогда

Коль скоро речь зашла о формулах, то эта среди них — относительно простая (поверьте!), однако для того, чтобы стало возможным записать ее в таком виде, потребовалось развитие большого числа алгебраических идей. Это заведомо самая сложная формула из тех, что нам встретятся в этой книге, и в ней использованы все три типа обозначений, которые я ввел: буквы, приподнятые числа и знак, причем корни здесь как квадратные, так и кубические. Понимания этой формулы от вас не требуется и определенно не требуется производить с ней никаких вычислений. Но важно понять ее общее устройство. Начнем с некоторой терминологии, которая будет нам полезна по мере продвижения вперед.

Алгебраическое выражение вида 2x4 − 7x3 − 4x2 + 9 называется полиномиальным выражением или, иначе говоря, многочленом. Такие выражения образованы путем сложения друг с другом различных степеней неизвестного. Числа 2, −7, −4 и 9, на которые умножаются эти степени, называются коэффициентами. Старшая степень, в которой неизвестное входит в многочлен, называется степенью этого многочлена, так что приведенный выше многочлен имеет степень 4. Имеются специальные названия для многочленов младших степеней (от 1 до 3 включительно): линейный, квадратичный и кубический[18]. Решения соответствующего уравнения 2x4 − 7x3 − 4x2 + 9 = 0 называются корнями многочлена.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Нет соединения с сервером, попробуйте зайти чуть позже