Читаем Истина и красота. Всемирная история симметрии полностью

Как и Лагранж, он основывал свои исследования на концепции перестановки. Перестановка — это способ переупорядочить некоторый упорядоченный список. Самый расхожий пример перестановки — это перетасовка колоды карт. Цель в этом случае обычно состоит в достижении некоторого случайного, т.е. непредсказуемого, порядка. Число различных перестановок в колоде карт поистине огромно, так что вероятность предсказать появление того или иного порядка исчезающе мала.

В теории уравнений перестановки возникают потому, что корни данного многочлена можно рассматривать как список. Некоторые весьма фундаментальные свойства уравнений непосредственно связаны с эффектом перетасовки этого списка. Интуиция подсказывает, что уравнение «не знает», в каком порядке мы выписываем его корни, так что перестановка корней не должна приводить ни к каким серьезным различиям. В частности, коэффициенты уравнения должны быть полностью симметричными выражениями от корней — выражениями, которые не меняются, когда корни переставляют.

Однако, как ранее заметил и должным образом оценил Лагранж, определенные выражения от корней могут оказаться симметричными по отношению к некоторым, но не ко всем перестановкам. Эти «частично симметричные» выражения тесно связаны со всякой формулой для решения уравнения. Это свойство перестановок было известно коллегам Руффини. Гораздо менее известным было то, как систематически использовал Руффини другую идею Лагранжа — что можно «перемножить» две перестановки таким образом, что получится новая перестановка; для этого две данные перестановки надо выполнить одну за другой.

Рассмотрим три символа a, b и c. На них имеется шесть перестановок: abc, acb, bac, bca, cab и cba. Возьмем одну из них, скажем, cba. На первый взгляд это просто упорядоченный список из трех символов. Однако его можно также воспринимать как правило переупорядочения исходного списка abc. В данном случае правило выражается как «обращение порядка». И это правило можно применять не только к данному, но и вообще к любому списку. Применив его, скажем, к bca, получим acb. Так что можно придать смысл умножению cba×bca = acb.

Эту идею, занимающую центральное место в нашем рассказе, можно, наверное, выразить яснее, если нарисовать некоторые диаграммы. Приведем две диаграммы для перестановок, которые переупорядочивают abc в cba и в bca, как показано на рисунке.

Две перестановки символов a, b, c.

Можно скомбинировать два переупорядочения в одно, разместив эти картинки одну над другой. Существуют два способа это сделать, показанные на рисунке.

Умножение перестановок. Результат зависит от того, какая перестановка берется первой.

Теперь результат «умножения» двух перестановок виден просто из нижней строки, которая в данном случае (левый рисунок!) есть acb. Приняв это определение «умножения» (которое не совпадает с обычным правилом умножения чисел), можно придать смысл утверждению cba×bca = acb. Соглашение состоит в том, что первая перестановка в произведении располагается в нашей двухэтажной конструкции снизу. Это существенно, поскольку если поменять два этажа местами, то получится другой ответ. Правая картинка показывает, что, когда перестановки перемножаются в противоположном порядке, результат есть bca×cba = bac.


Суть доказательства невозможности, которое предложил Руффини, состояла в выработке условий, которым должно удовлетворять всякое уравнение пятой степени, корни которого можно выразить в радикалах. Если общее уравнение пятой степени не удовлетворяет этим условиям, то, значит, у него нет корней такого типа, и, следовательно, его нельзя решить никаким естественным обобщением методов, применимых к кубике и квартике.

Следуя Лагранжу, Руффини плотно занялся симметричными функциями корней и их связью с перестановками. Уравнение пятой степени имеет пять корней, а на пяти символах имеется 120 перестановок. Руффини осознал, что эта система перестановок должна обладать некоторыми структурными свойствами, наследуемыми из всякой гипотетической формулы для решений квинтики. Если эти свойства отсутствуют, то такой формулы быть не может. Это несколько напоминает выслеживание тигра в джунглях, растущих в густой грязи. Если тигр там действительно есть, он должен оставить ясные следы. Нет следов — нет тигра.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Нет соединения с сервером, попробуйте зайти чуть позже