Читаем Истина и красота. Всемирная история симметрии полностью

Ферма еще ранее обнаружил некоторые специальные случаи этого принципа, назвав его принципом наименьшего времени. Простейший пример, позволяющий объяснить его работу, — это отражение света от плоского зеркала. Левый рисунок показывает, как световой луч, выходя из одной точки и отражаясь от зеркала, достигает второй точки. Одним из великих открытии на заре оптики был закон отражения, который гласит, что две части светового луча составляют с зеркалом равные углы[37].

Как принцип наименьшего времени приводит к закону отражения.

Ферма придумал изящный прием: отразить в зеркале второй участок луча, а заодно и вторую точку, как показано на правом рисунке. Благодаря Эвклиду условие «равных углов» — это то же самое, что утверждение, что в этой «отраженной» картине путь от первой точки до второй является прямой линией. Но Эвклид доказал тот знаменитый факт, что прямая линия есть кратчайшее расстояние между двумя точками. Поскольку скорость света в воздухе постоянна, кратчайшее расстояние означает то же самое, что наименьшее время.

Возвращаясь к геометрии на левом рисунке, мы видим, что выполнено то же самое утверждение. Таким образом, условие равных углов логически эквивалентно тому факту, что световой луч выбирает путь с наименьшим временем распространения из первой точки во вторую при условии, что по дороге надо отразиться от зеркала.

Связанный с этим принцип — закон преломления Снеллиуса — говорит о том, как «ломается» луч при переходе из воздуха в воду и вообще из одной среды в другую. Этот закон можно вывести подобным же образом, если учесть, что свет распространяется в воде медленнее, чем в воздухе. Гамильтон пошел еще дальше, утверждая, что тот же принцип минимизации времени применим ко всем оптическим системам, и воплотив эту мысль в едином математическом объекте — характеристической функции.

Использованная здесь математика впечатляла, но в руках Гамильтона она привела к немедленной экспериментальной отдаче. Гамильтон заметил, что из его метода следовало существование «конического преломления», когда один луч света при попадании на подходящий кристалл выходит из него в виде целого конуса лучей. В 1832 году это предсказание, неожиданное для всех кто работал в оптике, получило прочное экспериментальное подтверждение, когда Хэмфри Ллойд использовал кристалл арагонита. На следующее утро Гамильтон проснулся знаменитым.

К 1830 году Гамильтон озаботился тем, чтобы обзавестись семьей; он подумывал жениться на Элен де Вер, умом которой как он говорил Вордсворту, он восхищался. Ей он тоже писал письма в стихах и был готов уже сделать предложение, когда она заявила ему, что никогда не уедет из своей родной деревни Карра[38]. Он воспринял это как тактичный отказ — весьма вероятно, что обоснованно, поскольку через год она вышла за кого-то замуж и все же уехала.

В конце концов он женился на Элен Бейли — местной девушке, жившей неподалеку от обсерватории. Гамильтон описывал ее как «далеко не блестящую». Медовый месяц был ужасен: Гамильтон занимался оптикой, а Элен болела. В 1834 году у них родился сын Уильям Эдвин. Затем Элен уехала на большую часть года. Второй сын Арчибальд Хенри появился на свет в 1835-м, но брак уже трещал по швам.


В глазах потомства величайшим открытием Гамильтона была сформулированная им оптико-механическая аналогия. Но сам он до самой смерти — причем с все возрастающим упорством — отдавал пальму первенства вещи совершенного другого сорта — кватернионам.

Кватернионы представляют собой некоторую алгебраическую структуру, находящуюся в близком родстве с комплексными числами. Гамильтон был убежден, что они содержат в себе ключ к глубочайшим областям физики, а на склоне жизни убедил себя, что в них содержится ключ буквально ко всему. История, похоже, не согласилась с этой оценкой, и в течение следующего столетия кватернионы медленно тускнели, пропадая из поля общественного интереса, превратившись в тихую заводь абстрактной алгебры без серьезных применений.

Совсем недавно, однако, кватернионы пережили возрождение. И даже если они никогда не займут того положения, которое прочил им Гамильтон, их чем дальше, тем больше рассматривают как значимый источник важных математических структур. Кватернионы оказались очень специальным явлением — как раз настолько специальным, насколько этого требуют современные физические теории.

Сразу после открытия кватернионы произвели мощный переворот в алгебре. Они нарушили одно из важных алгебраических правил. На протяжении периода в двадцать лет чуть ли не все правила алгебры нарушались одно за другим, что иногда приносило богатейшие плоды, но ничуть не реже приводило в бесплодные тупики. То, что математики середины 1850-х годов воспринимали как не подлежащие изменениям правила, оказалось просто набором удобных допущений, облегчавших жизнь алгебраистам, но не всегда отвечавших более глубоким потребностям самой математики.

Перейти на страницу:

Все книги серии Библиотека фонда «Династия»

Ружья, микробы и сталь
Ружья, микробы и сталь

Эта книга американского орнитолога, физиолога и географа Джареда Даймонда стала международным бестселлером и принесла своему создателю престижнейшую Пулитцеровскую премию, разом превратив академического ученого в звезду первой величины. Вопрос, почему разные регионы нашей планеты развивались настолько неравномерно, занимает сегодня очень многих — по каким причинам, к примеру, австралийские аборигены так и не сумели выйти из каменного века, в то время как европейцы научились производить сложнейшие орудия, строить космические корабли и передавать накопленные знания следующим поколениям? Опираясь на данные географии, ботаники, зоологии, микробиологии, лингвистики и других наук, Даймонд убедительно доказывает, что ассиметрия в развитии разных частей света неслучайна и опирается на множество естественных факторов — таких, как среда обитания, климат, наличие пригодных для одомашнивания животных и растений и даже очертания и размер континентов. Приводя множество увлекательных примеров из собственного богатого опыта наблюдений за народами, которые принято называть «примитивными», а также из мировой истории, Даймонд выстраивает цельную и убедительную теорию, позволяющую читателю по-новому осмыслить скрытые механизмы развития человеческой цивилизации.

Джаред Даймонд , Джаред Мэйсон Даймонд

Культурология / История / Прочая научная литература / Образование и наука
Бог как иллюзия
Бог как иллюзия

Ричард Докинз — выдающийся британский ученый-этолог и популяризатор науки, лауреат многих литературных и научных премий. Каждая новая книга Докинза становится бестселлером и вызывает бурные дискуссии. Его работы сыграли огромную роль в возрождении интереса к научным книгам, адресованным широкой читательской аудитории. Однако Докинз — не только автор теории мемов и страстный сторонник дарвиновской теории эволюции, но и не менее страстный атеист и материалист. В книге «Бог как иллюзия» он проявляет талант блестящего полемиста, обращаясь к острейшим и актуальнейшим проблемам современного мира. После выхода этой работы, сегодня уже переведенной на многие языки, Докинз был признан автором 2006 года по версии Reader's Digest и обрел целую армию восторженных поклонников и непримиримых противников. Споры не затихают. «Эту книгу обязан прочитать каждый», — считает британский журнал The Economist.

Ричард Докинз

Научная литература
Нет соединения с сервером, попробуйте зайти чуть позже