Читаем Истина в пределе полностью

Именно бесконечно малые величины являются основным предметом изучения анализа бесконечно малых. Понятие бесконечности придает анализу бесконечно малых удивительную мощь, подчас граничащую с волшебством. Бесконечность — это основа математического анализа, но чтобы осознать, насколько велика ее роль, сначала следует уделить несколько абзацев основным понятиям исчисления.

Как уже говорилось в предисловии, анализ бесконечно малых состоит из двух внешне различных направлений: дифференциального и интегрального исчисления, каждое из которых имеет свои понятия и методы. В дифференциальном исчислении рассматриваются задачи о вычислении угла наклона касательной к кривой и расчета скорости при известном пройденном пути. К интегральному исчислению относятся задачи о вычислении площадей и объемов, а также задачи расчета пройденного пути при известной скорости. Фундаментальным понятием дифференциального и интегрального исчисления является понятие функции.

<p>Функции</p>

Большинство изучаемых нами процессов, будь то природные, экономические или любые другие, можно смоделировать с помощью функций, а затем проанализировать математическими методами. Иными словами, функции — это язык, который используется в науке при изучении всех этих процессов.

Функция — это правило, сопоставляющее одному числу другое. Обычно (но не всегда) это правило выражается с помощью алгебраических операций над числами.

Так, функция может сопоставлять одному числу (обозначим его t) другое число по следующему закону:

(t2 + 1)/(t4 + 5)

Так как число t может принимать различные значения, его называют переменной. Как правило, функции обозначаются буквами f, g, h, s или v, переменные — буквами x, у, z или t. Значение, которое функция сопоставляет произвольному числу t, записывается как f(t). Предыдущий пример будет выглядеть так:

f(t) = (t2 + 1)/(t4 + 5)

В частности, когда мы присваиваем переменной t конкретные значения, мы определяем значения функции. Так, при t = 1 получим:

f(1) = (12 + 1)/(14 + 5) = 2/6

при t = 2 имеем:

f(2) = (22 + 1)/(24 + 5) = 5/21

В следующей таблице приведены несколько значений переменной и соответствующих им значений функции:

t …… F(t)-1 …… 2/60 …… 1/5√2 …… 3/9

Простейшая физическая система — это движущееся тело. Его перемещение можно описать функцией s, которая сопоставляет каждому моменту времени t путь s(t), пройденный телом, или функцией v, которая сопоставляет каждому моменту времени t скорость v(t), с которой движется тело.

Рассмотрим конкретный пример. Если тело по истечении t секунд преодолело путь, точно равный квадратному корню из t метров, функция, описывающая это расстояние, будет выглядеть так: s(t) = √t. Эта функция, определяющая пройденный телом путь, также содержит информацию о том, с какой скоростью перемещается тело. Однако, чтобы получить доступ к этой информации, потребуется применить методы дифференциального исчисления.

Приведем еще один конкретный пример. Пусть дано тело, которое в течение t секунд двигалось со скоростью, равной t2 м/с. Функция, описывающая скорость движения этого тела, выглядит так: v(t) = t2. Этот пример похож на предыдущий: функция, описывающая скорость движения тела, также содержит информацию о пройденном пути. Однако, чтобы получить эту информацию, необходимо использовать интегральное исчисление.

Аналогично с помощью функций можно описать совершенно разные явления: изменение курса акций определенного банка или компании на фондовой бирже, плотность каждого участка тела человека (так мы сможем определить без хирургического вмешательства, где находятся кости, мышцы и внутренние органы) или силу, с которой потоки воздуха воздействуют на крылья самолета во время полета.

Чтобы использовать анализ бесконечно малых при решении задач, сначала требуется описать задачу на языке функций.

После того как природные, физические или экономические процессы, которые мы хотим изучить, представлены в виде функций, в дело вступают фундаментальные понятия анализа бесконечно малых. С их помощью можно извлечь из функций интересующую нас информацию.

<p>Производные</p>

Основное понятие дифференциального исчисления — это понятие производной. В действительности это один из краеугольных камней не только математики, но и науки в целом, ведь за ним скрываются такие фундаментальные понятия, как скорость или сила в физике, угол наклона касательной к кривой в геометрии и многие другие.

Производная функции f в точке а показывает, как изменится функция в этой точке по сравнению с тем, как изменяется значение переменной. Рассмотрим две функции из прошлых примеров: s(t) = √t и v(t) = t2. При t = 1 обе эти функции принимают значение 1: s(l) = 1 и v(1) = 1. Однако из таблицы значений видно, что поведение функций вблизи t = 1 существенно различается:

t — s(t)v(t)0,8 — 0,8944… — 0,640,9 — 0,9486… — 0,811 — 1 — 11,1 — 1,0488… — 1,211,2 — 1,0954… — 1,44

Заметьте, что функция v вблизи 1 изменяется более резко, чем функция s.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука