Читаем Истина в пределе полностью

Если теперь мы примем прирост х бесконечно малым, то есть приравняем o к нулю, то v = y, и предыдущая формула примет вид

Отсюда следует, что площадь, ограниченная кривой у = х2, равна 2/33/2 x. Может показаться, что Ньютон пытался вычислить площадь, ограниченную кривыми определенного типа, но в действительности полученный им результат намного важнее. В первой части «Анализа» Ньютон хотел изложить общий алгоритм и подчеркнуть, что он применим не только в задачах расчета площади, «Все задачи о длине кривых, о величинах и о поверхностях тел и о центрах тяжести могут быть сведены в конце концов к определению плоской поверхности, ограниченной кривой», — делает он крайне важное замечание, за которым следует раздел под названием «Приложение вышеизложенного к другим примерам того же рода». Это замечание отделяет первую часть работы, в которой изложен общий метод, от второй, в которой излагаются различные способы его применения. Можно сказать, что результат его работы несколько неопределен: Ньютон видел огромную ценность найденного им абстрактного метода, однако, возможно, на начальном этапе, когда идея еще не оформилась окончательно, ему было сложно выразить ее доступно. Скорее всего, на этом этапе ему попросту не хватало терминов и обозначений. Он сосредоточил основное внимание на абстрактной задаче определения функции по известной производной. Кроме того, он рассматривает и обратную задачу о вычислении изменения функции (об этом рассказывается в конце книги). Наконец, он приводит краткий алгоритм расчета этого изменения (производной). Четкие правила вычисления производной позднее опубликовал Лейбниц, но не будем забывать, что в «Анализе» Ньютон изложил не все результаты, полученные им в области математического анализа к 1669 году.

Всё вышеизложенное позволяет заявить, что выход «Анализа» ознаменовал появление анализа бесконечно малых. «Анализ с помощью уравнений с бесконечным числом членов» — великолепный пример, позволяющий оценить акт творения в математике во всем его великолепии: при прочтении книги Ньютона мы становимся свидетелями процесса возникновения анализа бесконечно малых. Так, если мы углубимся в чтение «Анализа» и попытаемся увидеть уже известные нам термины и понятия современного математического анализа, это можно будет сравнить с просмотром детских фотографий человека, с которым мы познакомились уже в зрелом возрасте: сквозь еще не оформившиеся, детские черты уже проступает облик знакомого нам взрослого человека.

Закончив рукопись «Анализа», который принес автору известность среди британских математиков, Ньютон показал свой труд Барроу. Тот предложил незамедлительно отправить работу Джону Коллинзу, члену Лондонского королевского общества, который занимался обработкой почты, распространением результатов и новостей подобно Марену Мерсенну. Ньютона охватил нездоровый страх, который будет сопровождать его перед публикацией всех его трудов: обнародовать труд означало подставить его под удары критиков. Здесь следует отметить, чтобы отчасти прояснить причины полемики Ньютона и Лейбница, что в те годы понятие «публикация» имело несколько иной смысл, нежели в наши дни. Сегодня это означает публикацию в научных журналах или в виде книги, доступной всем желающим. В то время, когда книги и особенно журналы еще не набрали такую популярность, как всего несколько десятилетий спустя, публикация означала представление рукописи группе близких друзей, а также тем, кто занимался распространением научных трудов, как, например, Джон Коллинз или в особенности Марен Мерсенн.

Чтобы продемонстрировать опасения Ньютона, далее мы подробно расскажем о письмах, которые Барроу отправил Коллинзу. Сначала, 20 июля 1669 года Ньютон разрешил Барроу всего лишь уведомить Коллинза, что у него находится рукопись «Анализа», запретив упоминать имя автора и название работы: «Один мой друг, обладающий блестящими способностями, отправил мне позавчера несколько писем, в которых описывает метод вычисления размерностей величин, подобный методу Меркатора, но намного более общий применительно к решению уравнений. Я отправлю вам рукопись с одним из ближайших писем и верю, что она доставит вам удовольствие».

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература