Читаем Истина в пределе полностью

Эта публикация изменила положение дел в споре за первенство: Валлис, пусть и не совсем точно, продемонстрировал, какими результатами располагали Ньютон и Лейбниц в 1676 году. Важнее всего было то, что впервые были преданы гласности документы, доказывающие, что Лейбниц опубликовал свою версию раньше, но Ньютон совершил открытие первым, сообщив об этом, пусть и неявно, Лейбницу по его просьбе. Летом 1699 года Лейбниц пишет: «Валлис попросил у меня разрешения на публикацию моих старых писем. <… > Поскольку мне нечего опасаться… я подтвердил, что он может публиковать все, что посчитает нужным». Очень скоро оказалось, что Лейбниц напрасно считал, что ему «нечего опасаться».

<p>«По когтям узнают льва»</p></span><span>

В тот же период произошел инцидент, который в высшей степени способствовал обострению дискуссии. Речь идет о знаменитой задаче о брахистохроне, предложенной Иоганном Бернулли в июне 1696 года. В ней требовалось найти кривую, двигаясь по которой исключительно под действием силы тяжести, тело пройдет путь из точки A в точку B за наименьшее время. В мае 1697 года Лейбниц опубликовал присланные ему решения задачи. Всего было получено четыре решения, авторами которых были сам Лейбниц, маркиз Лопиталь, Якоб Бернулли и автор задачи, Иоганн Бернулли. Также было прислано решение неизвестного автора, которое было впервые опубликовано в январе 1967 года в журнале «Философские записки». Как мы знаем, этим неизвестным автором был Ньютон. Увидев простое решение этой задачи, содержавшее всего 77 слов, Иоганн Бернулли угадал автора. Он сказал: «Tanquam ex ungue leonem» — «По когтям узнают льва». Во всех решениях, за исключением предложенного Лопиталем, искомой кривой являлась циклоида.

Продолжение истории, о котором мы расскажем далее, зафиксировано в воспоминаниях племянницы Ньютона и в переписке Иоганна Бернулли и Лейбница. Возможно, целью задачи, предложенной Иоганном Бернулли, было подтвердить возможности ньютоновского анализа бесконечно малых. В письме Иоганну Бернулли, датированном февралем 1697 года, Лейбниц писал, что только он сам, братья Бернулли, маркиз Лопиталь и Ньютон были способны решить эту задачу, так как в то время только им был известен анализ бесконечно малых, необходимый для ее решения. Именно по этой причине, как объяснял Лейбниц, эту задачу в свое время не смог решить Галилей: ему был неизвестен математический анализ.

Таким образом, неизвестным автором решения был не кто иной, как Ньютон, который в то время занимал должность смотрителя Монетного двора и не отошел от научной деятельности. Ньютон получил письмо с задаче о брахистохроне 29 января 1697 года. По рассказам его племянницы, письмо попало в руки Ньютона в четыре часа дня, когда тот усталый вернулся из Монетного двора — в то время полным ходом шла чеканка монет нового образца.

Спустя 12 часов, то есть в четыре часа утра, решение было готово. Племянница Ньютона не знала, что он вполне мог отыскать решение в глубине своей памяти и вспомнить, что искомой кривой является циклоида. Как пишет Уайтсайд, Ньютон должен был заметить, что задача схожа с задачей о поиске тела вращения, обладающего наименьшим сопротивлением течению однородного потока. Эту задачу он решил более десяти лет назад, когда работал над «Началами».

Но история на этом не заканчивается. Когда Лейбниц представлял полученные решения задачи о брахистохроне, он упомянул, что заранее знал, кому удастся найти решение: «Разумеется, не будет недостойным указать, что задачу удалось решить только тем, на кого я указал наперед. В действительности это те, кто достаточно глубоко проник в тайны нашего дифференциального исчисления. Так, наряду с братом автора [задачи] и маркизом Лопиталем из Франции я упомянул… господина Ньютона». Лейбниц не включил в список Фатио де Дюилье, и, кроме того, из его фразы можно было сделать вывод, что Ньютон является его учеником.

<p>Фатио атакует, Лейбниц контратакует </p></span><span>
Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии
Физика повседневности. От мыльных пузырей до квантовых технологий
Физика повседневности. От мыльных пузырей до квантовых технологий

Почему при течении воды в реках возникают меандры? Как заставить бокал запеть? Можно ли построить переговорную трубку между Парижем и Марселем? Какие законы определяют форму капель и пузырьков? Что происходит при приготовлении жаркого? Можно ли попробовать спагетти альденте на вершине Эвереста? А выпить там хороший кофе? На все эти вопросы, как и на многие другие, читатель найдет ответы в этой книге. Каждая страница книги приглашает удивляться, хотя в ней обсуждаются физические явления, лежащие в основе нашей повседневной жизни. В ней не забыты и последние достижения физики: авторы посвящают читателя в тайны квантовой механики и сверхпроводимости, рассказывают о физических основах магнитно-резонансной томографии и о квантовых технологиях. От главы к главе читатель знакомится с неисчислимыми гранями физического мира. Отмеченные Нобелевскими премиями фундаментальные результаты следуют за описаниями, казалось бы, незначительных явлений природы, на которых тем не менее и держится все величественное здание физики.

Андрей Варламов , Аттилио Ригамонти , Жак Виллен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература