Читаем Истинный творец всего. Как человеческий мозг сформировал вселенную в том виде, в котором мы ее воспринимаем полностью

Рис. 4.5. Классическая схема типичного интерфейса «мозг-машина». Lebedev M. A., Nicolelis M. A. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiological Reviews 97, no. 2, April 2017: 767–837.


Двадцать лет исследований интерфейса «мозг-машина» позволили накопить огромное количество экспериментального материала по функционированию мозгосетей у таких животных, как крысы и обезьяны, и даже у людей в свободном состоянии. Все эти данные подтверждают динамические представления о коре мозга, отличающиеся от общепринятых среди нейробиологов всего лишь пару десятилетий назад.

Анализируя данные одновременной регистрации активности нейронов, полученные в нашей лаборатории в Университете Дьюка за четверть века, я начал формулировать ряд нейрофизиологических законов, названных мною принципами физиологии нейронных ансамблей, которые позволяют описать динамику функционирования человеческого мозга.

В верхней части списка фигурирует принцип распределенной обработки, суть которого заключается в том, что все функции и поведенческие реакции, сформированные головным мозгом сложных животных, таких как человек, зависят от координированной работы обширных ансамблей нейронов, распределенных по многим участкам центральной нервной системы. В наших экспериментальных условиях этот распределенный принцип четко проявлялся при обучении обезьян использованию интерфейса «мозг-машина» для контроля движений роботизированной руки за счет одной лишь электрической активности мозга, без каких-либо явных движений собственного тела. В этих экспериментах животные достигали успеха только тогда, когда на интерфейс приходил объединенный сигнал электрической активности популяции нейронов коры. Никакие попытки использовать один нейрон или группу из небольшого числа нейронов в качестве источника контрольного моторного сигнала для интерфейса не приводили к правильным движениям роботизированной руки. Более того, мы обратили внимание, что нейроны, распределенные по многим областям лобной и даже теменной долей в обоих полушариях мозга, могут вносить весомый вклад в популяционную активность, необходимую для выполнения этой двигательной функции через интерфейс «мозг-машина».

Количественная обработка полученных данных позволила сформулировать второй принцип – принцип нейронной массы. Этот принцип отражает тот факт, что вклад любой популяции нейронов коры в кодирование поведенческого параметра, такого как произвольный моторный сигнал, создаваемый нашим интерфейсом «мозг-машина» для осуществления движения роботизированной руки, растет пропорционально логарифму числа добавленных в популяцию нейронов. Поскольку разные области коры демонстрируют разный уровень специализации, это логарифмическое соотношение разнится для разных областей (рис. 4.6). Подтверждая принцип дистрибутивности, эта закономерность означает, что все эти области коры могут поставлять некоторую важную информацию для решения общей задачи – перемещения роботизированной руки только за счет мыслительного процесса.


Рис. 4.6. Примеры «кривых сброса нейронов» (neuronal dropping curves, NDC), связывающие точность предсказания движения руки с использованием линейного декодера. Точность декодирования измерялась как коэффициент детерминации R2. Графики NDC отражают R2 как функцию величины нейронного ансамбля. Они строились путем расчета R2 для всей популяции нейронов с последовательным удалением по одному нейрону и пересчетом каждый раз значения R2 до тех пор, пока в популяции не оставался один-единственный нейрон. MI – первичная моторная кора, PMd – дорсальная премоторная кора, PP – задняя теменная кора, ipsi MI – ипсилатеральная первичная моторная кора. Wessberg J. C. et al. Real-Time Prediction of Hand Trajectory by Ensembles of Cortical Neurons in Primates. Nature 408, no. 6810, November 2000: 361–65.


Принцип многозадачности гласит, что электрическая активность одного и того же нейрона может вносить вклад в работу многих ансамблей нейронов одновременно; иными словами, отдельные нейроны одновременно включаются в разные сети, участвующие в кодировании и расчете нескольких мозговых функций или поведенческих параметров. Например, в описанном выше эксперименте с интерфейсом «мозг-машина» одни и те же нейроны коры могли одновременно вносить вклад в генерацию двух разных моторных параметров – вычисление направления движения руки и обеспечение правильной силы захвата.

Перейти на страницу:

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука
Эволюция
Эволюция

Цель этой книги — доступным и увлекательным образом познакомить читателя с эволюцией. Здесь объясняется 101 ключевой термин, часто встречающийся в литературе по данной отрасли знаний. Для удобства статьи идут в алфавитном порядке. Причем от читателя почти не требуется никаких специальных знаний или подготовки. Книга будет полезна для всех: и для широкого круга читателей, и для тех, кто готовится к поступлению в высшие учебные заведения, и для тех, кто уже в них учится.Книги этой серии совмещают в себе лучшие стороны и учебника, и словаря. Их вовсе не обязательно читать от корки до корки и в строго определенном порядке. Обращайтесь к ним, когда нужно узнать значение того или иного понятия, и вы найдете краткое, но содержательное его описание, которое, без сомнения, поможет вам выполнить задание или написать доклад. Материал в книгах излагается четко, с тщательным подбором необходимых научных терминов.Итак, если вам потребуется быстро и без больших затрат получить сведения по какой — либо теме — воспользуйтесь книгами данной серии! Желаем удачи! Пол Оливер, издатель серии

Millenarium , Александр Мун , Дженкинс Мортон , Родион Александрович Вишняков , Станислав Е. Козырецкий , Стивен М. Бакстер

Фантастика / Справочники / Попаданцы / Фантастика: прочее / Биология / Образование и наука / Образовательная литература / Словари и Энциклопедии