Читаем Источник землетрясений в свете догмы Рейда-Рихтера (СИ) полностью

Из эффекта Степанова и работ, указанных выше исследователей вытекают следующие главные выводы: 1) Чем выше деформация горных пород, тем выше электрическая разность потенциалов на поверхности деформируемых образцов; 2) При постоянной, установившейся нагрузке в горном массиве разность потенциалов падает до нуля; 3) Разность потенциалов зависит от структуры пород. Первый пункт объяснить несложно, это очевидно, что при большей нагрузке, появляется больше трещин в массиве, а как мы знаем, каждая трещина способна генерировать электрические заряды и создавать разность потенциалов. Второй пункт даёт нам ответ на вопрос, почему после наполнения водохранилища подземные толчки прекращаются - при установившейся нагрузке разность электрических потенциалов пород становится равной 0 и электромагнитные процессы прекращаются. Энергия зарождающегося землетрясения от гидростатического воздействия зеркала водохранилища в породах при стабильном горном давлении будет стремиться к минимуму и "лишние джоули" перетекут в окружающий массив. Тем самым потенциальная энергия напряжений массива будет стремиться к 0, приводя всю систему к равновесию. Ответ на третий пункт такой же очевидный, как и на первый - у всех пород разные молекулярные свойства и соответственно физические и химические параметры и согласно эффекту Степанова малейшие примеси могут уменьшить до нуля электрический потенциал горных пород. После ответа на три пункта зададим себе вопрос: - Достаточно ли изменения горного давления под каким-нибудь водохранилищем, чтобы произошло землетрясение? Ответа два: может быть достаточно, а может быть, и нет. Может быть, именно структура пород под водохранилищем не даст горному массиву достаточного импульса, необходимого для прохождения одного из механо-электро-магнитного эффектов или нескольких эффектов сразу, чтобы разрушить горный массив. Мы не устаём повторять, что процесс землетрясения, это сложный многоступенчатый процесс, зависящий от многих факторов, и процесс вполне может пойти дальше одной реакции массива. Процесс может "заглохнуть" в самом начале, а может развиваться, как набирающие силу торнадо, которое втягивая в свою воронку всё новые и новые порции воздуха, разгоняет его до больших скоростей и шаг за шагом приближает кульминационный момент катастрофы. К примеру, появление электрических зарядов и разности потенциалов в горном массиве под зеркалом водохранилища в результате его деформации, вызовет появление электромагнитного поля, которое в свою очередь может (а может, и нет) вызвать явление магнитопластичности и присущее этому процессу цепную реакцию деппининга дислокаций. В этом случае особенно показательна работа академика РАН А.Л. Бучаченко [2], отмеченная нами выше, которая показывает практическое использование явление магнитопластичности применительно к прогрессу развития подвижек земной коры и которая хорошо дополняет и вписывается в гипотезу Деформационного взрыва пород. Идём дальше. А что если и после этого, процесс магнитопластичности и деппининга дислокаций не сможет придать массиву необходимый импульс для развития и нарастания выделения энергии массивом? В таком случае, имея электромагнитное поле, природа постарается реализовать процесс несколькими явлениями в зависимости от различных свойств вмещающих пород: магнитострикции, электрострикции, цепной химической реакцией растворённых в породе газов, что, в конце концов, приведёт к следующему этапу: изменению размеров кристаллов пород и линейному, мгновенному и неудержимому расширению горного массива. Хватит ли теперь перечисленных нами факторов для прохождения землетрясения? Опять же ответ не однозначен: может быть хватит, а может, и нет. В процессе важна любая "мелочь", если так можно выразиться. К примеру, из исследований Степанова получается, что форма массива влияет на величину возникающего потенциала. В опытах он был наименьшим при плоских образцах (высота меньше длины) и наибольшим при образцах кубической формы. То есть, даже такой параметр горного массива, как размер блока, может оказать решающее значение. У природы в запасе слишком много комбинаций и времени на их "перебор": одни комбинации могут затормозить и наглухо заглушить процесс подвижек массива, а другие комбинации могут разогнать процесс до невероятных скоростей и аномально его усилить с катастрофическим завершающим аккордом. По всей вероятности в природе существуют такие комбинации процессов, о которых мы пока не знаем и не догадываемся об их существовании. К нашему счастью, большинство реакций горного массива на изменение горного давления и вариации деформаций дальше лёгкого потряхивания местности не идут. В том, что, в процессе землетрясения много нюансов, или много "мелочей", есть существенный плюс для человечества. Он заключается в том, что предотвратить землетрясения вполне возможно, как и возможность людей повлиять на его мощность, ибо, чем больше вариаций, тем больше возможностей "ухватиться за какую-нибудь мелочь", и в итоге, повлиять на весь процесс в целом. Заключая сказанное о техногенных землетрясениях, приводим небольшой объём статистики от американских коллег, который ярко отражает суть технологических землетрясений. Так, учёные под руководством К. Фролиха [C. Frohlich] из университета штата Техас в Остине опубликовали статью [28] в которой приводят данные, согласно которым, из 162 землетрясений, зафиксированных в Техасе в период 1975-2015 гг., примерно четвертая часть была вызвана добычей сланцевых углеводородов. Официальная статистика сейсмологической службы штата свидетельствует о том, что за последние 40 лет, когда в штате начались активные работы по добыче сланцевой нефти и газа, частота подземных толчков возросла. Проанализировав данные, ученые установили, что подземные толчки спровоцированы одномоментной закачкой большого количества воды в скважину. То есть и в этом случае, не о каких сейсмозонах, тектонических плитах, разломах речь не идёт, а расположение очагов в непосредственной близости от скважин указывает на их зональность и строгую зависимость от точки приложения нагрузки на массив и перераспределением (изменением) энергии деформаций отдельных блоков в массиве. Приведённый нами пример говорит о том, что гипотеза Деформационного взрыва пород имеет под собой реальную почву.

Перейти на страницу:

Похожие книги

Биосфера и Ноосфера
Биосфера и Ноосфера

__________________Составители Н. А. Костяшкин, Е. М. ГончароваСерийное оформление А. М. ДраговойВернадский В.И.Биосфера и ноосфера / Предисловие Р. К. Баландина. — М.: Айрис-пресс, 2004. — 576 с. — (Библиотека истории и культуры).В книгу включены наиболее значимые и актуальные произведения выдающегося отечественного естествоиспытателя и мыслителя В. И. Вернадского, посвященные вопросам строения биосферы и ее постепенной трансформации в сферу разума — ноосферу.Трактат "Научная мысль как планетное явление" посвящен истории развития естествознания с древнейших времен до середины XX в. В заключительный раздел книги включены редко публикуемые публицистические статьи ученого.Книга представит интерес для студентов, преподавателей естественнонаучных дисциплин и всех интересующихся вопросами биологии, экологии, философии и истории науки.© Составление, примечания, указатель, оформление, Айрис-пресс, 2004__________________

Владимир Иванович Вернадский

Геология и география / Экология / Биофизика / Биохимия / Учебная и научная литература
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное