Необходимость в поддержке ИИ особенно остро ощущается в ситуациях, когда последовательность боевых действий сильно сжата и должна быть продолжительной. Люди определенного возраста могут вспомнить раннюю видеоигру под названием Space Invaders, в которой игроку поручалось "отстреливать" враждебных инопланетян, спускающихся на экран с "неба". По мере прохождения игры инопланетяне спускались все быстрее, и в конце концов одолевали всех, кроме самых опытных игроков. Аналогичная проблема возникает и у тех, кому поручено защищаться от кибер- и ракетных атак. Такие ситуации угрожают перегрузить способностью принимать решения и реагировать даже очень способных, хорошо обученных людей. В подобных ситуациях задача состоит не только в том, чтобы быстро и эффективно отреагировать на атаку, но и в том, чтобы поддерживать эту реакцию в течение всего времени, пока атака продолжается, которое может растянуться на минуты, часы или (в случае кибернетической атаки) даже недели.
Если заглянуть в будущее, то "космические захватчики" могут появиться в новых формах, таких как рои беспилотников (как во многих современных боевиках), гиперзвуковые ракеты или кибернетические полезные нагрузки. Например, рассмотрим авианосец, атакуемый большим количеством баллистических и гиперзвуковых крылатых ракет. Эффективная защита от такой атаки зависит от быстрой обработки и анализа больших объемов данных, использования результатов для определения приоритетности целей, выявления вариантов поражения и выбора подходящего из них. Скорость, с которой это должно происходить, и время, в течение которого это может быть необходимо поддерживать, вероятно, превысят способность человека эффективно управлять обороной авианосца. Достижения в области машинного обучения могут позволить эффективное автономное поведение в таких обстоятельствах. В последние годы произошли значительные улучшения в приложениях для обработки сигналов, которые могут ускорить и улучшить интеграцию данных, генерируемых сетью датчиков. Сочетание ИИ и слияния датчиков может помочь определить, какие нападающие должны быть задействованы, в какой последовательности, и какие перехватчики лучше использовать. Предвестник этой "алгоритмической войны" произошел во время ракетного обстрела Израиля из Газы в 2021 году. Железный купол", израильская система противоракетной обороны, сыграла решающую роль в ограничении ущерба от этих атак. Когда ракетные обстрелы происходили большими залпами - "ливнем" ракет - управляемый ИИ компьютер определял, когда и где запустить израильские перехватчики.
В ночь с 5 на 6 января 2018 года неизвестные напали с тринадцати вооруженных беспилотников на российскую авиабазу Хмеймим и соседнюю военно-морскую базу Тартус в Сирии. Россияне отбили атаку, используя сочетание средств противовоздушной обороны и радиоэлектронной борьбы. 14 сентября 2019 года более двадцати начиненных взрывчаткой беспилотников, запущенных Ираном или одной из его сторонних организаций, нанесли удар по нефтяным объектам Саудовской Аравии в Абкайке, крупнейшем в мире центре стабилизации сырой нефти. Беспилотники вывели из строя около 5,7 миллиона баррелей в день добычи нефти, что составляет примерно 5 процентов от общего мирового объема.
Хотя эти атаки были скоординированы, маловероятно, что беспилотники управлялись единым алгоритмом роения, основанным на ИИ. Атаки роения могут показаться аморфными; однако, согласно данному определению, они намеренно структурированы и скоординированы, способны осуществляться с нескольких направлений. Со временем развитие ИИ может позволить осуществлять высоко скоординированные атаки сотен или даже тысяч автономных систем, что было бы невозможным для человеческих контролеров.
Что произойдет, когда защитники столкнутся с гораздо более масштабной атакой беспилотников, использующих сложное управление на основе ИИ? Этот вопрос мог показаться причудливым несколько лет назад. Сейчас он кажется гораздо менее фантастичным. В начале 2019 года Иран провел учения под названием "Путь в Иерусалим", в которых участвовали 50 беспилотников, которые, по утверждению Тегерана, действовали скоординированно и наносили удары по заранее определенным целям на территории протяженностью более 500 миль.
Ведущие военные страны мира стремятся использовать ИИ для обеспечения беспилотникам возможности действовать роем. В январе 2017 года ВМС США провели испытания роя из 103 беспилотников, запущенных с трех самолетов F/A-18. Беспилотники общались друг с другом независимо от управления человеком и продемонстрировали продвинутое поведение роя, такое как коллективное принятие решений, адаптивный полет в строю и самовосстановление.