После Второй мировой войны, с изобретением интегральной схемы и рождением полупроводниковой промышленности, началась Третья промышленная революция. Начиная с 1970-х годов, такие изобретения, как персональный компьютер, а затем Интернет, сделали оперативный доступ к большим объемам информации повсеместным. В производственном секторе многое из того, что раньше выполнялось с помощью механических процессов, стало автоматизированным благодаря компьютерным системам и робототехнике. Именно в это время, в 1981 году, впервые появилась 3D-печать с использованием процесса, известного как "стереолитография".
На начальном этапе AM-машины могли печатать только одним материалом одновременно, что значительно ограничивало их ценность. Постепенно 3D-принтеры приобрели способность использовать несколько материалов одновременно. Хотя в ранних процессах AM использовались только пластмассы, современные 3D-принтеры могут легко соединять множество материалов, позволяя изготавливать различные композиты. Сегодня существуют 3D-принтеры, которые могут печатать более чем из 100 материалов. Расширение возможностей процесса аддитивного производства недавно привело к экспериментам с органическими материалами.
Некоторые считают, что мир стоит на пороге потенциальной четвертой промышленной революции, основанной на цифровом производстве и "умном" производстве. Одним из предвестников революции является замедление процесса перемещения производства из стран с развитой экономикой в страны с низкой себестоимостью. Это обусловлено двумя основными тенденциями: ростом производительности труда в высокоразвитых индустриальных обществах благодаря передовой робототехнике и искусственному интеллекту, а также растущей способностью 3D-печати относительно дешево производить товары на заказ в любое время и в любом месте.
Аддитивное и субтрактивное производство
Используя цифровые инструкции и укладывая последовательные слои сырья, 3D-производство создает твердый трехмерный объект. Существует несколько методов 3D-печати, включая струйную подачу материала, сплавление порошкового слоя и фотополимеризацию. Выбор метода зависит от печатаемого изделия, его технических характеристик и качества, выбора материалов и скорости производства.
Аддитивное производство представляет собой фундаментальный переход от субтрактивного производства (СМ), которое доминировало в производстве во время предыдущих промышленных революций. Субтрактивное производство обеспечивает массовое производство продукции с высокой скоростью, но при этом образуется значительно больше отходов, чем при АМ, и оно более ограничено в отношении структур, которые оно может создавать. Благодаря сокращению времени, необходимого для изготовления оснастки и сборки изделий, сокращению сроков производства и минимизации материальных отходов, аддитивное производство может повысить скорость инноваций, расширить специализацию и повысить эффективность цепочки поставок.
Рассмотрим разницу между AM и SM в производстве такого инструмента, как молоток. При субтрактивном производстве берется блок сырья и удаляется лишнее, пока не останется готовый продукт, оставляя значительные отходы в качестве побочного продукта. Процесс AM просто добавляет материал, необходимый для создания молотка, что делает производство более эффективным и менее расточительным. Более того, аддитивное производство предлагает "сложность бесплатно". При субтрактивном производстве повышение сложности конструкции увеличивает затраты. При использовании AM-принтера затраты на производство сложных объектов примерно одинаковы с простыми. После завершения цифрового проектирования создание сложной формы не требует больше времени, навыков или затрат, чем печать простого куба.
Аддитивное производство также может создавать объекты, которые невозможно создать с помощью субтрактивных производственных процессов. Процесс послойного нанесения добавок на 3D-принтере позволяет конструктору оптимизировать прочность, долговечность и другие свойства материала детали, что делает возможным производство широкого спектра новых материалов с изменяемыми свойствами, такими как жесткость и проводимость. В аэрокосмической промышленности, например, часто отдается предпочтение материалам с высокой прочностью и низким весом. Используя 3D-печать, производители могут выточить детали, чтобы сделать самолет более легким и экономичным. Экономия веса может выражаться в экономии на потреблении топлива или увеличении дальности полета, скорости или полезной нагрузки оружия. В отличие от СМ, с помощью АМ можно изготовить деталь, обладающую большей прочностью материала только там, где она необходима, и меньшей там, где ее нет.