Подобного рода тексты сами по себе мало вразумительны и не отличаются большой достоверностью. Нужно брать большие тексты и, кроме того, со всем их смысловым окружением. А так как из классического периода греческой эстетики в цельном виде до нас дошли только произведения Платона и Аристотеля, то на изучении эстетической терминологии этих философов только и можно составить себе ясное представление об античной теории пропорций. Мы берем Платона не потому, что этот мыслитель был более высокого масштаба, чем Аристотель, но, во-первых, потому, что Платон занимался пропорциями гораздо больше, чем Аристотель, и, во-вторых, потому, что его диалоги гораздо больше отражают традиционные эстетические представления, чем чересчур ученые рассуждения Аристотеля.
Не следует думать, что эстетические воззрения - плод создания отдельных философов, или эстетиков, которые их научно формулируют. На деле эстетические воззрения принадлежат, прежде всего, отдельным народам и вовсе никак не формулируются, а сквозят во всех оборотах речи, в бытовом поведении, в характере социально-исторической жизни и в повседневных оценках окружающей действительности. Поэтому при изучении Платона мы будем обращать внимание не столько на его официальные формулы, сколько на специфические обороты его речи, чтобы подсмотреть и подслушать именно то, что он позаимствовал из общенародной жизни, и в частности из пифагорейских кругов, и что послужило ему материалом для его философских формул.
Платоновский термин "anJ logia" Цицерон первый - и очень удачно - перевел как "proportio". Так как платоновская аналогия - это по существу равенство двух отношений, то и мы здесь будем употреблять термин "пропорция". Таково же понимание этого термина и в современной математике. Но, конечно, это понимание слишком отвлеченное. Его надо конкретизировать, и тут могут встретиться разные неожиданности.
2. Платоновские тексты о пропорциях, не имеющие прямого отношения к эстетике
Для общей ориентации укажем сначала тексты Платона, не имеющие прямого отношения к эстетике. В Theaet. 186 с читаем, что все непосредственные телесные впечатления люди и животные получают тотчас же после рождения; "соображения же (analogismata) относительно сущности (oysian) и пользы возникают с трудом и в течение известного времени при помощи многих предметов и воспитания, если только возникают". Здесь "аналогия" есть вообще мышление или мысль, возникающая на основе умственной выучки и воспитания. По-видимому, имеются в виду постоянные акты сравнения одних предметов с другим, необходимые для развития мысли. То же и в Crat. 399 сл.: "Прочие животные ничего не рассматривают, не сравнивают (analogidzetai), но расчленяют из того, что видят; человек же одновременно и видит... и расчленяет и соображает (logidzetai) то, что видит". В R. P. IV 441 С. противопоставляется "разумное соображение (to analogisamenon) о лучшем и худшем" "неразумно аффективному (tAi alogistAs thymoymeni)".
Гораздо ближе к эстетическому значению "аналогии" подходит текст из Politic. 257 сл., где софист, политик и философ "отличаются один от другого больше, чем по пропорции (cata ten analogia) нашей науки", т.е. больше, чем по геометрической пропорции. Сказано это, конечно, в шутливом тоне, так как едва ли тут мыслится настоящая геометрическая пропорция. Но "пропорция" тут уже, несомненно, говорит о каких-то отношениях и о взаимном отношении этих отношений.
Вплотную к учению пропорциональности подходит Epin. 990 e - 991 b - текст, к сожалению, весьма неясный44. Наш перевод этого текста (тоже не абсолютно достоверный) таков: "Но что божественно и удивительно для вдумчивого наблюдателя это то, что всякая [вычисляемая или построяемая] природа [вещь] отпечатлевает свой вид и род [свои видовые и родовые образования] при помощи каждый раз особой пропорциональности в связи с тем, что образующий элемент (dynameos) и ему противоположный [например, основание и высота четырехугольника] всегда находятся между собою в двойном отношении. Именно, первая [природа или пропорция] с двойным отношением есть та, которая, с точки зрения отношения, переходит от числа 1 к числу 2. Двойной является также и та, которая образует тело и осязаемое, поскольку она переходит от 1 к 8. А то, что является двойным [может иметь] середину, которая одинаковым образом больше меньшей и меньше большей части; с другой стороны, она превосходит одну и превосходится другой частью на одну и ту же долю своих крайних членов. Так, посредине между 6 и 12 получается величина полуторная [для второго случая] и величина, равная целому с одной третью [для первого случая]. Та из этих самых, которая находится [строго] посредине того и другого, научила людей согласованному и соразмерному исполнению ради воспитания в ритме и гармонии, даровавши [это] счастливому хороводу Муз".