Простейшая мысль заключается в том, что Платон пользуется установленными до него числовыми отношениями октавы, квинты, кварты и тона и наблюдает присутствие в них пропорции. Так как октава равняется 2, квинта - 3?2 и кварта - 4?3, и так как 2:3?2 = 4?3:1, то наличие пропорциональности в отношениях тонов между собою, с точки зрения Платона, очевидно: октава относится к квинте, как кварта к началу октавы. А что пропорция предполагает между квинтой и квартой наличие одного целого тона 8:9, это ясно из отношения 4?3:3?2.
Это рассуждение не вызывает у нас никакого сомнения, поскольку отвлеченно взятые здесь количественные отношения, как бы их не расценивать, составляют пропорцию. Дальше, однако, начинается трудно усвояемая античная спецификация этой мысли.
Прежде всего, эти пропорциональные отношения Платон понимает также пространственно. И Платон и вся античность - мы с этим сталкиваемся на каждом шагу - вообще все на свете понимают телесно (правда, телесность может быть разной). Оказывается, тон, кварта, квинта и октава суть телесная характеристика космоса. Разные части пространства, оказывается, относятся между собою как тоны, как кварты, как квинты и как октавы (а дальше мы узнаем, что и как полутоны). Как понимать такую пространственно-звуковую концепцию? Почему пространство в античной эстетике несет на себе функции музыкальных тонов?
Мы вовсе не ставим цель защищать это давно отжившее и, если угодно, вполне курьезное учение. Однако следует обратить внимание на то простейшее обстоятельство, что высота тона зависит от степени натянутости издающей его струны. Слабо натянутая струна издает более низкие звуки, сильно натянутая более высокие. Это известно всем. Но, может быть, не всем известно то, что античные философы очень часто представляли себе пространство именно в виде различным образом натянутой струны, т.е. с разной степенью напряженности, с разной степенью сгущенности и разреженности. В греческой философии существовал даже термин tonos (что значит "натянутость"), которым философы, как, например, Гераклит или стоики, характеризовали все бытие в целом. Оно все, с начала до конца и сверху донизу, было в разной степени натянуто и напряжено, в разной степени сгущено и разрежено. Не вещи в пространстве были в разной степени напряжены, а само пространство было в разной степени напряжено и натянуто.
И это по той простой причине, что пространство, даже у самых крупных греческих философов, очень слабо отличалось от заполняющего его вещества. Но если это пространство и вместе с ним все его заполнение, т.е. все бытие в целом, было аналогично разнообразно натянутым струнам, то почему же древние не могли говорить здесь о музыкальных тонах и почему они не могли находить среди своих первоначальных элементов кварты, квинты и октавы? Конечно, разная уплотненность пространства выражена здесь чрезвычайно наивно. И тем не менее здесь функционировал огромной важности и абсолютно-научный принцип, а именно принцип разной плотности пространства, или, как теперь говорят в науке, принцип относительности, который не только является последним словом современной науки, но который, диалектически соединяя пространство и материю, во многом глубоко соответствует также идеям диалектического материализма. Поэтому учение античной эстетики о гармонии сфер с ее квартами, квинтами и октавами требует самого внимательного анализа и не должно быть отбрасываемо априори как нелепый курьез.
Но Платон идет еще дальше. Акустическая пропорция характеризует для него не только отношения чисто пространственные, но и качественно-пространственные, т.е. взаимоотношения элементов. Оказывается, огонь относится к воздуху как кварта, к воде - как квинта, а к земле - как октава (и, стало быть, расстояние между воздухом и водой равно целому тону).
Все эти трудно усвояемые построения мы должны подвергнуть рассмотрению особо, а сейчас констатируем только то, что пропорция у Платона может иметь смысл и чисто акустический, и телесно-акустический, и даже космически-акустический.
Место в "Тимее", откуда извлекается это учение (35с), интересно еще в одном отношении. Читаем: "...в каждом промежутке оказалось по два средних члена, из которых один на столько же долей превышал первый из крайних членов, на сколько его самого превышал второй [из этих членов], а другой на такое же число превышал один [из тех же крайних членов], каким его самого превышал другой [их них]".