Читаем История астрономии. Великие открытия с древности до Средневековья полностью

Что касается Меркурия и Венеры, то в первую очередь мы должны отметить, что среднее место этих планет всегда совпадает с Солнцем, так что центр гиппопеды всегда находится там же, где Солнце. Поскольку этот центр расположен в 90° от полюсов вращения третьей сферы, мы видим, что эти полюса для двух планет совпадают. Этот вывод из теории подтверждает замечание Аристотеля о том, что «по Евдоксу, полюса третьей сферы различны для некоторых планет, но одинаковы для Афродиты и Гермеса», и это предоставляет нам ценное доказательство верности выводов Скиапарелли. Поскольку наибольшая элонгация каждой из этих планет от Солнца равна половине длины гиппопеды, то есть наклонению третьей и четвертой сфер, Евдокс, несомненно, определил наклон, наблюдая за элонгацией, поскольку не мог использовать ретроградных движений, которые в случае Венеры трудно увидеть, а в случае Меркурия вне досягаемости. Если гиппопеда для Меркурия имеет длину 46°, то половина ширины или максимальная широта равна 2°14', каковая величина почти равна наблюдаемой. Для Венеры мы можем принять длину гиппопеды 92°, что дает половину ширины 8°54' в близком соответствии с наблюдаемой максимальной широтой. Но, как и для Марса, для Венеры невозможно ретроградное движение, и никакая иная гипотеза относительно величины наклонения не поможет избавиться от этой ошибки теории. А гораздо хуже то, что Венере в таком случае требуется одинаковое время, чтобы пройти от восточного конца гиппопеды до западного конца и наоборот, что не согласуется с фактами, так как в действительности Венера проходит от максимальной западной элонгации до максимальной восточной за 440 дней, а от восточной до западной элонгации – лишь за 143 дня, в каковом обстоятельстве очень легко убедиться. Теория столь же неудовлетворительна и для широты, так как гиппопеда пересекает эклиптику в четырех точках: в двух крайних и двойной; следовательно, Венера в течение каждого синодического периода четыре раза проходит через эклиптику, что далеко не так.

Однако при всех несовершенствах деталей система гомоцентрических сфер, предложенная Евдоксом, достойна нашего восхищения как первая серьезная попытка разобраться в, казалось бы, беспорядочном движении планет. Для Сатурна и Юпитера и практически для Меркурия система хорошо объясняла их движение по долготе, хотя и оказалась неудовлетворительной для Венеры и полностью развалилась в случае с движениями Марса. Пределы движения по широте также хорошо представлены разнообразными гиппопедами, хотя периоды фактических отклонений от эклиптики и их места в циклах оказались совсем не верны. Однако надо помнить, что Евдокс не мог иметь в своем распоряжении результатов систематических наблюдений; вероятно, в Египте он узнал основные данные о точках стояния и ретроградном движении внешних планет, а также их периоды обращения, которые, безусловно, были хорошо известны вавилонянам и египтянам, тогда как в Греции практически не велось сколько-нибудь продолжительных регулярных наблюдений. И если кто-то повторит давнюю претензию о чудовищной сложности этой системы, нужно иметь в виду, что Евдокс, как замечает Скиапарелли, в своих планетных теориях пользовался лишь тремя элементами: периодом верхнего соединения, сидерическим периодом обращения (функцией которого является синодический период) и наклоном оси третьей сферы к оси четвертой. Для тех же задач сегодня нам требуются шесть элементов!

Если же, однако, система была основана на недостаточных наблюдениях, некоторые последователи Евдокса все же, как видно, сравнили движения небесных тел, которые дает теория, с теми действительными, поскольку мы видим, что Каллипп Кизикский, ученик Евдокса, занимался тем, что совершенствовал труд своего учителя спустя три десятка лет после его первого опубликования. Каллипп также известен нам тем, что усовершенствовал солнечно-лунный цикл Метона, и это показывает, что он должен был располагать удивительно точными сведениями о продолжительности периода обращения Луны. Симпликий утверждает («О небе», с. 493), что Каллипп, который учился вместе с Полемархом, знакомым с Евдоксом, отправился вместе с Полемархом в Афины, чтобы обсудить открытия Евдокса с Аристотелем и с его помощью исправить и дополнить их. Это, по всей вероятности, произошло в правление Александра Македонского (336—323), когда Аристотель находился в Афинах. Исследования Каллиппа привели к важному усовершенствованию системы Евдокса, как пишут Аристотель и Симпликий; и так как первый ставит это в заслугу исключительно Каллиппу, представляется маловероятным, что сам он сыграл в нем какую-либо роль, хотя и от всего сердца одобрял («Метафизика», XI, 8, с. 1073 b). Каллипп написал книгу о своей планетной теории, но она была утрачена уже ко времени Симпликия, который мог сослаться только на историю астрономии Евдема, где содержалось описание теории.



Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже