Следовательно, Абуль-Вафа не знал ничего о движении Луны, кроме того, что заимствовал у Птолемея. Но просневсис Птолемея – не та вариация, которую обнаружил Тихо Браге. Последняя зависит только от элонгации Луны от Солнца, так как она равна + 39,5′ sin 2ε, тогда как выразить эффект просневсиса без аномалии неподвластно смертному человеку. У Птолемея выражение для всех предполагаемых им неравенств по долготе при разложении содержит, помимо членов, представляющих уравнение центра и эвекцию, причем последняя равна
+ 1°19,5′ sin(2ε – m),
весьма существенный член
+ 17,8′ sin 2ε [cos(2ε + m) + 2 cos (2ε – m)],
где в – это элонгация, am – средняя аномалия. Очевидно, что этот член не имеет ничего общего с вариацией, за исключением того, что он исчезает в сизигиях и квадратурах. Тихо Браге не прибавил свой новый элемент к неизмененной лунной теории Птолемея, да и фактически таким образом мы бы просто исказили его теорию, так что максимальная ошибка достигла бы более чем 3°. По той причине, что Птолемей не располагал достаточными результатами наблюдений, он мог лишь исходить из того, что и после учета эвекции остаются некоторые весьма заметные неравенства, проявляющиеся только вне сизигий и квадратур, но он не смог найти закон, управляющий этим явлением, и не знал, насколько большую величину оно представляет; он мог только слегка корректировать свои построения, и в этом за ним самым добросовестным образом следовали арабы, которые ничего не прибавили к сделанному им и предоставили обнаружить третье лунное неравенство человеку, кому суждено было вдохнуть новую жизнь в практическую астрономию.
Переходя к пяти планетам, мы находим, что, вообще говоря, арабы предприняли очень мало попыток усовершенствовать работу Птолемея. Однако они не удовольствовались использованием системы Птолемея исключительно в качестве вспомогательного геометрического способа вычислений; им нужна была реальная, физически истинная система мироздания, и потому они принимают на веру существование твердых хрустальных сфер на манер аристотелевских. Над Луной находится аль-афир, пятая сущность, лишенная легкости и тяжести и не воспринимаемая человеческими чувствами; из этого вещества образуются сферы и планеты (Аль-Баттани). Уже в книге Аль-Фергани мы находим принцип, который, как мы видели, появляется еще в V веке (Прокл) и становится общепризнанным в Средние века, гласящий, что наибольшее расстояние до планеты равно наименьшему расстоянию до планеты, расположенной сразу же над ней, таким образом, что между сферами не остается пустых пространств[242]
. По Аль-Фергани, полудиаметр Земли равен 3250 милям, что почти соответствует 56⅔ мили Аль-Мамуна вплоть до градуса, если принять π = 22/7. Исходя из расстояний до Луны и Солнца у Птолемея, легко выразить другие расстояния в полудиаметрах Земли, так как соотношение между максимальным и минимальным расстояниями хорошо вписывается в теорию Птолемея. Аль-Баттани приводит аналогичный ряд цифр, хотя и с некоторыми небольшими различиями. Он умалчивает о том, как своеобразно трактовал Птолемей теорию Меркурия. В приведенной ниже таблице указаны расстояния в полудиаметрах Земли:Аль-Кушчи, один из астрономов Улугбека, приводит перечень полудиаметров «углублений» планетных сфер (то есть наименьших расстояний), выраженных в парасангах, причем диаметр Земли составляет 2545 парасангов. Выраженные в полудиаметрах Земли, цифры несколько отличаются от приведенных выше, например, наименьшее расстояние до Солнца составляет 1452, а наибольшее до Сатурна – 26 332, но он ничего не сообщает о том, как были найдены эти значения.
Перед тем как оставить эту тему, приведем диаметры планет по Аль-Фергани, так как они стали известны в Европе очень рано и на них ссылались Роджер Бэкон и другие[243]
. При несущественных различиях Аль-Баттани, Абуль-Фарадж и Авраам бар-Хия приводит одни и те же цифры:Система сфер наиболее подробно изложена в трех более поздних трактатах: космографии Закарии ибн Мухаммада ибн Махмуда аль-Казвини (около 1275 г.), астрономии Абуль-Фараджа, написанной в 1279 году, и астрономии Махмуда ибн Мухаммада ибн Омара аль-Джагмини, о котором одинаково неизвестно, когда он жил и кто был по национальности, но, вероятно, он писал в XIII или XIV веке. В этих учебниках мы находим сложную систему сфер, которая должна была учитывать все особенности движения планет в полном согласии друг с другом в общем порядке сфер, но не предложила ничего нового в теории Луны и других планет. Прилагаемые рисунки (взятые из Аль-Джагмини) лучше проиллюстрируют идеи, чем длинное описание[244]
.