Что касается движения Солнца, то Птолемей удовольствовался теорией Гиппарха. Здесь он допустил огромный промах, поскольку в течение почти трехсот лет прецессия и смещение линии апсид (о чем он не знал) увеличили ошибку в 35′, сделанную Гиппархом, примерно до 5½°. Тропический год у Гиппарха оказался слишком долгим, следовательно, среднее движение – слишком малым, и ошибка за 300 лет (с 147 г. до н. э.) дошла до 76½′, к которым еще можно прибавить максимальную погрешность 22′ в уравнении центра из-за ошибки в значении эксцентриситета, из которого исходил Гиппарх.
Таким образом, ошибка в положении Солнца в таблицах Птолемея может составить около 100′. Поистине очень странно, что Птолемей никак не попытался улучшить точность солнечной теории; возможно, она недостаточно его интересовала по причине отсутствия каких-либо неравномерностей движения, кроме одного; но, разумеется, сложность измерения абсолютной долготы Солнца с любой степенью точности не могла не стать непреодолимым препятствием на пути к вычислению более точных числовых значений солнечной теории.
Но если мы обратимся к теории Луны, окажется, что Птолемей самым существенным образом усовершенствовал работу своего предшественника. Гиппарх лишь использовал эпицикл, движущийся на концентрическом с Землей деференте. Птолемей обнаружил, что нерешенные ошибки этой теории, уже смутно замеченные Гиппархом, достигают максимума в момент квадратуры и совершенно исчезают в сизигии; однако еще одна трудность заключалась в том, что ошибка не повторяется в каждой квадратуре, порой исчезая вовсе, а порой достигая целых 2°39′ – своего максимального значения. В конце концов выяснилось, что, когда Луна оказывалась в квадратуре и в то же время в перигее или апогее эпицикла, так что уравнение центра было равно нулю, местоположение Луны прекрасно согласовывалось с теорией Гиппарха, но при этом ошибка оказывалась наибольшей всякий раз, когда уравнение центра достигало максимума в момент квадратуры. Таким образом, действие второго неравенства всегда увеличивало абсолютное значение первого, особенно в квадратурах. Из этого следовал очевидный вывод, что радиус эпицикла имеет переменную длину, большую в квадратуре, чем в сизигии. Поскольку нельзя было предположить, что изменяется длина радиуса, изменяться должно было расстояние от поверхности Земли, чтобы она могла появляться под разными углами в разное время; другими словами, центр эпицикла должен был двигаться по эксцентру, но так, чтобы угловая скорость была равномерной, и не относительно центра круга, а относительно Земли.
Но в то же время предполагается, что линия, проходящая через центр и апогей эксцентра, вращается в попятном направлении вокруг Земли, так что угол, который она образует с линией от Земли до центра эпицикла, угол