Читаем История атомной бомбы полностью

Макс Планк болтает с Гансом Гейгером. Генерал-фельдмаршал Эрхард Мильх приветствует представителей компании «Ауэр». Среди гостей присутствуют и несколько господ в черной униформе с черепом и костями на фуражке. Отто Ган говорит на тему, которая сделала его знаменитым: «Расщепление ядра урана». И само собой разумеется, в списке докладчиков значится и Вернер Гейзенберг. Съезд для обсуждения будущего «уранового клуба» созван двадцать шестого февраля 1942 года уже не Управлением вооружений, а снова — как в сентябре 1939 года — Государственным советом по науке. Знаменитости из политики, экономики и науки должны составить себе представление о состоянии дел. И Гейзенбергу с его видением «уранового котла» явно удается пробудить новые аппетиты. Он описывает машину высотой приблизительно с дом, которая производит недорогое электричество, а в уменьшенном мобильном формате годится в качестве привода для надводных и подводных кораблей Атлантики. Может быть, с такими «весьма значительным, технически пригодным для использования количеством энергии в относительно небольших количествах вещества» скоро можно будет также увеличить дальность действия немецких бомбардировщиков до самого Нью-Йорка. А в довершение всего этого из реактора можно будет выгребать — так сказать, в качестве золы — еще и взрывчатку фантастической пробивной силы.

С другой стороны, Гейзенберг прилагает весь свой авторитет физика мировой величины, чтобы вызванную с таким трудом эйфорию военных, которые уже готовы поставить его под пресс нехватки времени, тут же снова пригасить ссылкой на большие расходы промышленного масштаба. Шпагат удается. К концу дня, судя по всему, «атомной физикой заинтересовались не только сухопутные войска, но и руководство флота и военно-воздушных сил». Этапная цель достигнута: «урановый клуб» с его двадцатью двумя институтами остается на плаву, а вселяющие ужас военные повестки желтеют в долгом ящике. Опять бронь. По мнению Отто Гана ядерный реактор и вовсе являет собой «философский камень, который всегда искали средневековые алхимики, потому что они видели в нем ключ для превращения элементов».


Гленн Сиборг встречает свой тридцатый день рождения девятнадцатого апреля 1942 года в Чикаго. В «метлабе», металлургической лаборатории Чикагского университета, он и его коллеги должны разработать метод, позволяющий химически отделять плутоний от облученного урана — в промышленном масштабе, разумеется. Но поначалу речь идет лишь о том, чтобы хотя бы раз увидеть в глаза пресловутое вещество. Никто до сих пор не видел его невооруженным глазом. Обращение с ультрамикроскопически малыми количествами в несколько стомиллионных долей грамма требует виброустойчивого рабочего помещения с массивным бетонным столом. Сиборг обретается в отслужившей свое фотолаборатории. Поскольку действующего реактора, который размножал бы плутоний, пока еще нет, он переключается на циклотрон в Сент-Луисе. Там он подвергает уран облучению — круглосуточно, неделями и месяцами, — симулируя таким образом подходящую продолжительность работы реактора. В ста килограммах облученного материала микроскопически распределено 0,25 грамма ценной субстанции. Сиборгу предстоит справиться с нечеловеческим вызовом: высвободить плутоний из урановой массы, которая, помимо всего прочего, еще и заражена всей палитрой высокоактивных продуктов расщепления. Чтобы не причинить никому вреда, еще не изобретенный способ экстракции должен проистекать за бетонной стеной метровой толщины.


В Лейпциге в это же самое время Роберт Дёпель, профессор радиационной физики, готовит новую установку для эксперимента. Когда он очень осторожно засыпает урановый порошок в полые трубки внутри алюминиевого шара, его жена Клара стоит рядом, держа наготове огнетушитель. Металлический уран намного активнее оксида урана. Уже одного трения между металлом и внутренней стенкой трубки достаточно, чтобы порошок урана воспламенился и язык пламени взметнулся вверх. Полгода назад Пашен, механик Дёпеля, не готовый к такому повороту событий, получил тяжелые ожоги кисти. Переход к металлическому урану приносит Вернеру Гейзенбергу и супругам Дёпель долгожданный прорыв. В их четвертом лейпцигском эксперименте впервые получено больше нейтронов, чем абсорбировано. И хотя они не вызвали этим цепной реакции, однако доказали принципиальную возможность действующего уранового котла. Они полны воодушевления — правда, лейпцигский алюминиевый шар диаметром семьдесят сантиметров пока что всего лишь модель — в отличие от объемных реакторов, которые уже строит Ферми. Подводя итоги эксперимента, Дёпель и Гейзенберг на основании своих цифр делают вывод, что для настоящей машины им потребуется пять тонн тяжелой воды и десять тонн металлического урана. Но хотя бы по той причине, что этот особый сорт воды все еще по капле получают на единственной норвежской фабрике, они обречены на ожидание.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже