Десятилетний Карл Фридрих фон Вайцзеккер явно высокоодаренный мальчик, и он решительно намерен сделать свою детскую страсть к астрономии профессией. В качестве доказательства своей серьезности он преподносит матери в подарок стихотворение собственного сочинения:
После этого родители выписали отпрыску популярный астрономический журнал, и вскоре обнаружилось, что его интерес — отнюдь не быстрогаснущая падающая звезда. 1927 год он, четырнадцатилетний, проводит со своими родителями вдали от немецкой родины. Отец у него дипломат и работает в Копенгагене, в немецком посольстве. К этому времени Карл Фридрих уже занимается планетарной моделью атома Бора и набрасывает собственные ответы на вопрос, почему в атоме действуют другие законы природы, чем в мире, который он может воспринимать своими органами чувств. Однако обратное падение с высоких орбит воображения в низменность будней для пубертатно своенравного характера сопряжено с великим разочарованием. Все ему кажется «омерзительным»: учителя, соученики-верхогляды. В общем, все люди. Вообще всё. Мать в отчаянии. Она чувствует, что ее сын несчастен, и не знает, как ему помочь.
Вечерние приемы в доме Вайцзеккеров — составная часть дипломатической профессии и даже рутина. Но в первые недели 1927 года к ним приходят друзья и близкие — на проводы. Ибо Вайцзеккеры покидают Данию и отправляются в Женеву. Однажды вечером в гости приходит и Вернер Гейзенберг, который в это время вместе с национальным героем Дании Нильсом Бором как раз возводит несущие опоры новой квантовой механики. Марианна фон Вайцзеккер познакомилась с ним на одном приеме, и его виртуозная игра на фортепьяно привела ее в восторг. Следуя наитию, она сажает Карла Фридриха за стол рядом со знаменитым физиком. Может быть, в надежде, что ее сын найдет этого неизменно жизнерадостного гостя не столь «омерзительным», как весь остальной мир. Начитанный мальчик и без матери знает, что сидит рядом с человеком, только что вышедшим на след законов атомарного мира.
Когда гости разошлись, Карл Фридрих, сияя, говорит матери: «Это был лучший день в моей жизни!». И что астрономия, возможно, не так интересна, как квантовая физика. Вернеру Гейзенбергу тоже понравился вечер, проведенный рядом с сыном посла. Мальчик напомнил ему, должно быть, бойскаутские времена. Как прирожденный вожак и идеальный старший брат, он по-мальчишески парировал не по годам разумные доводы сына дипломата. То, что за этим «лучшим днем в его жизни» уже вскоре последует куда более значительное событие, связанное с Вернером Гейзенбергом, юный Вайцзеккер никак не мог ожидать. Через короткое время после этой первой встречи — семья дипломата как раз возвратилась из Копенгагена в Берлин — от Гейзенберга приходит почтовая карточка. Она адресована не родителям, а Карлу Фридриху. Гейзенберг пишет, что по дороге из Копенгагена в Мюнхен должен делать пересадку в Берлине. Не хочет ли Карл Фридрих встретить его на Штеттинском вокзале и потом проехаться с ним на такси до Ангальтского вокзала. Они смогли бы, таким образом, продолжить прерванный копенгагенский разговор, тем более что у Гейзенберга есть чем поделиться.
Уже несколько недель Гейзенберг ожесточенно спорит с Бором о точной формулировке нового вида теории вероятностей. В то время как он стремится к радикально новому языку, Бор продолжает настаивать на том, что надо примирить классическую физику с квантовой механикой. Но Гейзенберг полон хладнокровной решимости опубликовать свое открытие, даже если это приведет к разрыву с Бором.
Наблюдателю квантовых масштабов, объясняет Гейзенберг юному Вайцзеккеру, принципиально невозможно точно измерить местонахождение частицы и одновременно ее скорость. Чем упорнее этот наблюдатель сосредоточится на локализации электрона, тем менее будет поддаваться измерению его скорость. Для обратного процесса справедливо то же самое. Эта принципиально возникающая неточность при измерениях двух величин — таких, как местоположение и скорость электрона, — никак не связана с неумением физиков или с несовершенством измерительных приборов. Эта неопределенность есть установленная природой граница, которую наблюдатель атомарных событий преодолеть не может.
Чтобы вообще измерить местоположение и скорость частицы, надо направить на нее луч света. Световая энергия вступает в неизбежное взаимодействие с частицей и отталкивает ее, так сказать, в сторонку. Значит, свет хоть и находит точное местонахождение электрона, но вместе с тем изменяет его скорость, которую в это мгновение уже нельзя измерить точно.