Попытки найти общие принципы строения биологических систем, управляющих развитием организмов, предпринимались уже в начале XX в. Н.А. Белов (1914, 1924) первым высказал идею, что основным типом взаимоотношений в организме является то, что теперь называют отрицательной обратной связью. Экспериментальное обоснование этого принципа взаимодействия применительно к биологическим системам дал в 30-х годах М.М. Завадовский, назвав его «плюс-минус взаимодействием». Затем он показал, что в процессах онтогенетической дифференциации основную роль играют положительные обратные связи. Систематическое применение принципа обратной связи к биологическим системам началось после создания основ кибернетики Н. Винером (1948). Оно привело к выяснению основных характеристик регуляторных биологических систем, раскрытию конкретных структурных основ реализации обратных связей и обеспечения надежности передачи информации. Биокибернетический подход оказался плодотворным в исследовании процессов, протекающих на всех уровнях организации. С его помощью особенно успешно стали изучать процессы жизнедеятельности клеток, морфогенез, работу мозга и органов чувств, регуляцию функциональных процессов, изменения генетической структуры популяций, экологические проблемы, коммуникацию между животными. Универсальное значение для биологии приобрел метод математического моделирования. Построение математических моделей на основе самых существенных связей между анализируемыми явлениями играет незаменимую роль во всех случаях, когда невозможно или трудно поставить эксперимент непосредственно на изучаемом объекте. Применение математических методов в биологии связано с использованием ЭВМ, позволяющих благодаря быстроте совершаемых ими операций не только анализировать результаты эксперимента, но и изменять его направление согласно заданной программе.
Внушительные успехи биологии XX столетия, стремительное ускорение темпов ее развития, колоссальное увеличение объема информации, удваивающейся каждые пять лет, при ретроспективном взгляде могут породить впечатление, будто в наш век ее движение освободилось от прежних блужданий и зигзагов и приобрело исключительно прямолинейный характер. Но такая точка зрения ошибочна. В силу специфики процесса познания развитие биологии, как и любой другой отрасли естествознания, и в XX в. продолжает оставаться чрезвычайно сложным и внутренне противоречивым процессом, которому не чужды временные остановки, задержки и заблуждения. Как справедливо отмечал на XIII Международном конгрессе по истории науки французский историк биологии Ж. Кангилем, «история науки должна была бы обратить наше внимание на тот факт, что научные открытия в определенной системе знаний и ввиду имеющейся возможности превращения их в идеологию способны играть роль преграды для теоретических исследований в другой системе. Но случается также, что эти теоретические исследования вначале и особенно в тех областях, где не сразу можно получить экспериментальные доказательства, сами претендуют на роль идеологии»[3]
.Наиболее яркой иллюстрацией этого положения может служить история взаимоотношений между менделизмом и дарвинизмом. Первоначально законы Менделя, выведенные, исходя из допущения константности наследственных факторов, и возникшая на их основе хромосомная теория наследственности представлялись дарвинистам либо ошибочными, либо сугубо частными явлениями. Они были склонны усматривать в них возрождение старого фиксизма, принявшего теперь новую форму. В свою очередь многие генетики в начальном периоде развития этой науки отвергали дарвинизм, материалистическую теорию эволюции. Обе концепции, казалось, призванные дополнить друг друга, определенным образом оказывали взаимное тормозящее влияние. И лишь спустя более чем четверть века после переоткрытия законов Менделя постепенно начался плодотворный процесс их синтеза.
В силу неравномерности развития разных отраслей биологии и их неодинакового возраста, в силу различной степени сложности тех или иных биологических проблем они находятся в наши дни на разных фазах своей зрелости. «В то время как в области явлений наследственности (точнее в том ее разделе, который касается процессов наследственной передачи) и в области явлений филогенеза, — отмечал Б.Л. Астауров, — мы обладаем столь разработанными теориями, как хромосомная теория наследственности и эволюционная теория видообразования посредством естественного отбора, в области учения о клетке мы располагаем лишь рядом более или менее широких, но разрозненных обобщений, которые можно назвать клеточной теорией только с большими оговорками, а в области биологии развития мы бродим пока в совершенных потемках среди невообразимого множества узнанных фактов, частных закономерностей и построенных для них дробных объяснений, не обладая здесь светочем какой-либо достаточно общей теории и все еще взирая на развитие цыпленка в яйце как на подлинное чудо»[4]
.