В отличие от силовых испытательные трансформаторы выполняются однофазными и работают в кратковременном режиме. Поэтому они не имеют развитой системы охлаждения. Их номинальное напряжение в зависимости от назначения обычно лежит в пределах от нескольких десятков до сотен киловольт. Рядом зарубежных фирм изготовлены уникальные трансформаторы напряжением 750–1200 кВ. Номинальные токи испытательных трансформаторов обычно составляют 0,1–10 А. Важной особенностью выполнения испытательных трансформаторов является стремление предельно снизить уровень собственных частичных разрядов и индуктивность рассеяния. Первое позволяет более точно измерять частичные разряды в испытуемом объекте, второе — соединять трансформаторы в каскадные схемы.
Из экономических соображений для получения предельно высоких испытательных напряжений целесообразно использовать каскадное последовательное включение испытательных трансформаторов, имеющих на стороне высокого напряжения специальную обмотку для питания следующей ступени. Обычно каскадные схемы состоят из четырех трансформаторов, причем первая ступень состоит из двух параллельно включенных трансформаторов. Трехступенчатыми каскадами напряжением 2250 кВ и мощностью 5 MB•А оснащены крупнейшие исследовательские лаборатории России (НИИПТ, СПГТУ, СибНИИЭ и др.), производства фирмы TuR (г. Дрезден, Германия). Уникальный трехступенчатый каскад напряжением 3 MB производства этой же фирмы установлен на открытой площадке ВЭИ (г. Истра).
При испытаниях объектов с большой емкостью, таких как кабели, шинопроводы, элегазовые устройства, используются резонансные схемы. В них испытуемый объект соединяется последовательно с катушкой индуктивности. Питание осуществляется от трансформатора номинальным напряжением порядка 10 кВ. За счет резонанса напряжений на объекте создается испытательное напряжение, во много раз превышающее напряжение питающего трансформатора. Использование резонансных схем позволяет существенно снизить стоимость испытательной установки.
Другой вид источников постоянных высоких напряжений — электростатические генераторы, принцип действия которых основан на механическом переносе заряда с помощью движущейся ленты или вращающихся диска либо барабана, для испытания изоляции используется чрезвычайно редко. Однако в технике высоких напряжений электростатические генераторы находят применение в качестве эталонов высокого напряжения, отличающихся высокой стабильностью и отсутствием пульсаций.