Обобщая результаты своих экспериментальных работ, А. Ампер установил математическое выражение количественных соотношений взаимодействующих токов подобно тому, как это сделал Ш. Кулон по отношению к взаимодействию статических зарядов. Эту задачу А. Ампер решил аналитическим приемом, исходя из принципов И. Ньютона о взаимодействии масс и уподобляя этим массам два элемента тока, произвольно расположенных в пространстве. При этом А. Ампер предположил, что взаимодействие элементов тока происходит по прямой, соединяющей середины этих элементов, и что оно пропорционально длине элементов тока и самим токам. Первый труд А. Ампера о взаимодействии электрических токов был опубликован в 1820 г.
Электродинамическая теория А. Ампера изложена им в сочинении «Теория электродинамических явлений, выведенная исключительно из опыта», изданном в Париже в 1826–1827 гг.
Опираясь на труды предшественников, а также на важные результаты своих исследований, А. Ампер пришел к принципиально новому выводу о причине явлений магнетизма. Отрицая существование особых магнитных жидкостей, А. Ампер утверждал, что магнитное поле имеет электрическое происхождение. Основываясь на тождестве действия круговых токов и магнитов, А. Ампер пришел к выводу о том, что магнетизм какой-либо частицы обусловлен наличием круговых токов в этой частице, а свойства магнита в целом обусловлены электрическими токами, расположенными в плоскостях, перпендикулярных к его оси. Разработанная А. Ампером гипотеза молекулярных круговых токов явилась новым, прогрессивным шагом на пути к материалистической трактовке природы магнитных явлений.
А. Ампером в 1820 г. была высказана мысль о возможности создания электромагнитного телеграфа, основанного на взаимодействии проводника с током и магнитной стрелки. Однако А. Ампер предлагал взять «столько проводников и магнитных стрелок, сколько имеется букв …, помещая каждую букву на отдельной стрелке». Очевидно, что подобная конструкция телеграфа была бы весьма громоздкой и дорогой, что, по-видимому, помешало практической реализации предложения А. Ампера. Потребовалось некоторое время для того, чтобы найти более реальный путь создания телеграфа.
Значение работ А. Ампера для науки было весьма велико. Своими исследованиями А. Ампер доказал единство электричества и магнетизма и нанес решительный удар царившим до него представлениям о магнитной жидкости. Установленные им законы механического взаимодействия электрических токов принадлежат к числу крупнейших открытий в области электричества.
Выдающийся вклад А. Ампера получил высочайшую оценку: в 1881 г. Первый Международный конгресс электриков присвоил единице силы тока наименование «Ампер» [1.6].
2.6. ОТКРЫТИЕ ЯВЛЕНИЯ ТЕРМОЭЛЕКТРИЧЕСТВА И УСТАНОВЛЕНИЕ ЗАКОНОВ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ
Дальнейшее изучение явлений электричества и магнетизма привело к открытию новых фактов [1.4–1.6].
В 1821 г. профессор Берлинского университета Томас Иоганн Зеебек (1770–1831 гг.), занимаясь исследованием возможности получения электрического тока посредством двух разнородных металлов без участия какой-либо жидкости, открыл новое явление, заключавшееся в следующем. К висмутовой пластине 7–
Если вместо нагревания спая
Фундаментальное исследование вопроса о направлении термоэлектрического тока произвел французский ученый Антуан Сезан Беккерель (1788–1878 гг.). Ему удалось расположить металлы в термоэлектрический ряд, в котором каждый предыдущий металл дает ток через нагретый спай к каждому последующему. А.С. Беккерель показал, что термоэлектрический ток может возникнуть не только при использовании разнородных металлов, но и при различии в структуре или плотности проводника с одной и другой стороны от нагреваемого места.
В течение длительного времени термоэлементы вследствие их крайней неэкономичности получали применение только для измерения температур. Как известно, благодаря успехам современной науки и техники в области полупроводников созданы предпосылки для разработки более экономичных термоэлементов.