Вместе с тем гидравлические системы, выполняющие, как правило, функции приводов органов управления самолетом, в принципе могут быть заменены соответствующими электрическими приводами.
Сравнение основных параметров гидропривода и электропривода показывает, что электропривод уступает гидроприводу по удельной массе и быстродействию.
Существенное преимущество электрическая система по отношению к гидравлической имеет в эксплуатационных затратах, органичном сочетании электроавтоматики и собственно привода.
Перспектива использования полностью электрической системы связана с применением нового типа высокоскоростного электропривода на базе вентильного двигателя с постоянными магнитами высокой энергии.
Уровень требуемой электрической мощности непрерывно повышается и в ближайшее десятилетие может достигнуть нескольких мегаватт при длительности работы свыше 20 лет.
Жесткие специфические требования к космическим источникам питания: высокие удельные массогабаритные параметры, высокая надежность в условиях отсутствия (либо ограниченного) обслуживания, длительный ресурс работы, устойчивость к воздействию окружающей среды (вакуум, невесомость, радиационное излучение, температурные перепады), механическим стартовым и посадочным перегрузкам и другим факторам — накладывают жесткие ограничения на выбор первичного источника энергии.
В настоящее время в качестве таких источников используются солнечная, атомная (реакторы и радиоизотопные источники) и химическая энергия, преобразуемая безмашинным (прямым) способом в электрическую на основе фотоэлектрических, термоэлектрических, термоэмиссионных и электрохимических процессов, где одним из основных факторов оптимальности является КПД преобразования. В перспективе для достижения более высоких мощностей рассматриваются такие динамические системы, в которых солнечная энергия преобразуется в теплоту, используемую затем в паротурбинном и газотурбинном циклах для вращения турбоэлектрогенераторов.
На рис. 8.1 представлены ориентировочные области оптимального применения различных типов энергосистем в космических задачах в зависимости от уровня требуемой электрической мощности и ресурса работы.
Ядерные установки обеспечивают высокие мощности, но опасность аварийного радиационного загрязнения, уровень радиопомех и относительно большая стоимость в ряде случаев ограничивают возможность их широкого использования в космосе.
Радиоизотопные системы с термоэлектрическими преобразователями имеют относительно большой срок службы, но обладают невысоким КПД, что ухудшает их удельные массогабаритные характеристики. Такие системы также потенциально радиационно опасны.
Электрохимические генераторы (ЭХГ) представляют собой конструкцию из топливных элементов и системы автоматики, обеспечивающей стабильность температуры и давления подводимых реагентов водород-кислород и удаление воды после реакции [8.49, 8.50].
Теоретически КПД ЭХГ приближается к 100%. В США и России разработаны варианты таких космических генераторов на водороде и кислороде со щелочными и кислотными электролитами. В частности, энергообеспечение программы высадки человека на Луну осуществлялось на базе ЭХГ. В последующем при создании космических кораблей многоразового использования типа «Шатл» (США) и «Буран» (Россия) были созданы ЭХГ с более высокими удельными энергетическими параметрами, способные генерировать электрическую мощность до 40 кВт при удельной мощности порядка 70 Вт/кг. Достигнутый срок службы составлял более 5 тыс. ч.
Первый наш искусственный спутник Земли, запущенный в 1957 г., обеспечивался электроэнергией от химических источников тока — аккумуляторов серебряно-цинковой системы, разработанных во Всесоюзном научно-исследовательском институте источников тока (ВНИИТ), возглавляемом Н.С. Лидоренко.