Читаем История электротехники полностью

В ВЭИ проводились исследования, связанные с синтезом различных полимеров: полиэфиров, полиуретанов, эпоксидных, фенолформальдегидных и карбамидных смол, поливинилацеталей, полиамидов, полиорганосилоксанов, полиорганометаллосилоксанов и др. В ВЭИ и ряде других организаций (ВНИИЭМ, ВНИИКП) разрабатывались различные электроизоляционные лаки, компаунды и материалы на основе новых полимеров.

Особого внимания заслуживают работы по изысканию новых путей синтеза полимерных кремнийорганических соединений, связанных с фундаментальными исследованиями механизма образования этих соединений. Эти теоретические исследования были начаты в ВЭИ под руководством К.А. Андрианова в 1935 г. В то время в мире еще не были известны высокополимерные соединения, содержащие молекулы, построенные из силоксанных группировок атомов и обладающие хорошими технологическими свойствами (гибкостью, растворимостью, способностью полимеризоваться и т.д.), характерными для органических смол.

Развитие электроизоляционных материалов и электроизоляционной техники можно условно разбить на несколько этапов.

Первым этапом (1920–1928 гг.), способствовавшим развитию электроизоляционной техники, явились систематические электрофизические исследования диэлектриков, которые были начаты в лабораториях Ленинградского физико-технического института.

Руководителем института А.Ф. Иоффе было открыто явление высоковольтной поляризации, имеющее большое значение для понимания процессов, происходящих в изоляции электрооборудования. Сотрудники этого института Н.Н. Семенов и В.В. Фок создали оригинальные теории пробоя диэлектриков. Тогда же, в конце 30-х годов, проводили испытания природы диэлектрических потерь, электропроводности при больших напряженностях электрического поля И.В. Курчатов и А.П. Александров. Эти исследования, положившие начало новой науке — физике диэлектриков, заслужили самую высокую оценку как в нашей стране, так и за рубежом. В дальнейшем работы в области физики диэлектриков были продолжены в Физическом институте АН СССР, в Томском и Ленинградском политехнических институтах, в ВЭИ, МЭИ, а также заводских лабораториях крупных электротехнических заводов (ХЭМЗ, «Электросила», «Динамо», Московский электрозавод и др.). Несколько позднее (в 30-е годы) получила развитие химия диэлектриков.

Вторым этапом, способствовавшим развитию электроизоляционной техники (1928–1935 гг.), явились работы по созданию более совершенных электроизоляционных материалов, проводившиеся в ВЭИ, а также в лабораториях заводов ХЭМЗ, «Электросила», «Динамо», Московского электрозавода, завода им. Лепсе, «Изолит».

В результате этих исследований электротехническая промышленность получила новые электроизоляционные материалы: глифталевые смолы и лаки, битумно-масляные и масляно-смоляные пропиточные, клеящие и покровные лаки, битумные пропитывающие компаунды, покровные эмали, синтетические жидкости, большую номенклатуру слюдяных материалов, слоистые пластики, разные виды электроизоляционных бумаг и картонов, намотанные бумажно-бакелитовые изделия, светлые и черные лакоткани, асбоцемент непропитанный и пропитанный и др.

Третьим этапом развития электроизоляционной техники явилось создание в 1932–1940 гг. специальных видов изоляции — влаго-, водо- и химостойкой с повышенной теплопроводностью и нагревостойкостью. Сочетание стекловолокнистых материалов, щипаной слюды и модифицированных глифталевых электроизоляционных лаков позволило получить изоляцию электрических машин с повышенной нагревостойкостью.

Качественный скачок в повышении нагревостойкости изоляции стал возможен в результате разработки гаммы высоконагревостойких электроизоляционных материалов на основе кремнийорганических полимеров, созданных под руководством К.А. Андрианова.

В 1948 г. под его руководством в ВЭИ были начаты систематические исследования нагревостойкости кремнийорганической изоляции, синтетических пленок и других полимерных диэлектриков. В результате было доказано наличие связи между структурой диэлектриков и их нагревостойкостью, а также установлены количественные зависимости срока службы изоляции электродвигателей от температуры для кремний-органических и других полимерных диэлектриков. Следует также отметить систематические исследования связи между строением полимерных диэлектриков и их электрофизическими и механическими свойствами, проводимые в ВЭИ с конца сороковых годов.

Возросший спрос на слюдяные материалы для изоляции обмоток турбо- и гидрогенераторов, высоковольтных машин, тяговых, шахтных, металлургических, морских и других электродвигателей с рабочей температурой 130–180 °С увеличивал расход дорогостоящей и остродефицитной щипаной слюды. В связи с этим возникла необходимость более рационального использования добываемых слюд, а также замены слюдяных материалов менее дефицитными.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже