Читаем История электротехники полностью

В 1841 г. Р. Майер написал статью «О количественном и качественном определении сил», но редактор известного в Европе физического журнала не счел нужным ее напечатать. Рукопись статьи была обнаружена в архивах редакции и опубликована лишь в 1881 г., т.е. 40 лет спустя. Следующая статья «Замечания о силах неживой природы» была опубликована в 1842 г. В этой работе Р. Майер много внимания уделяет взаимопревращениям механической работы и теплоты, не зная о соответствующем исследовании С. Карно, определяет механический эквивалент теплоты (по его данным, он равен 365 кг•м/ккал), говорит о «неразрушимости» сил и формулирует свой принцип. Здесь же Р. Майер впервые в истории науки вкладывает в понятие «сила» смысл «энергия», не произнося еще этого слова (впрочем, слово было произнесено раньше; этим словом английский физик Томас Юнг (1773–1829 гг.) обозначил величину, пропорциональную массе и квадрату скорости движущегося тела).

Идеи Р. Майера носили столь общий и универсальный характер, что они сначала не были восприняты современниками. Его жизнь превратилась в непрерывную борьбу за утверждение своего принципа.

Классические измерения механического эквивалента теплоты провел в 1841–1843 гг. (опубликовано в 1843 г.) Д. Джоуль. По его данным, этот эквивалент составлял 460 кг•м/ккал. Д. Джоуль также установил независимо от Э. Ленца связь между электрическим током и выделяемой теплотой (закон Джоуля — Ленца). Интересно отметить, что работу Д. Джоуля Британское общество (так называется Британская академия наук) отказалось опубликовать в полном объеме, требуя от него все новых экспериментальных уточнений.

Наконец, Г. Гельмгольц в 1847 г. в работе «О сохранении силы» дал в наиболее общем виде закон сохранения, показав, что сумма потенциальной и кинетической энергии остается постоянной. Г. Гельмгольц вывел выражение электродвижущей силы индукции исходя из закона сохранения энергии. Там же впервые дана математическая трактовка закона. Завершением длительного пути, пройденного наукой до точной формулировки закона сохранения энергии, можно считать доклад У. Томсона «О динамической теории тепла» (1851 г.).

У. Томсон в 1860 г. ввел в науку термин «энергия» в современном его смысле. К такому же толкованию термина «энергия» пришел в 1853 г. известный шотландский физик Уильям Джон Макуорн Ренкин (Ранкин) (1820–1872 гг.) — один из создателей технической термодинамики.

Изложение истории открытия закона уместно закончить словами выдающегося английского физика и общественного деятеля Джона Димонда Бернала (1901–1971 гг.), написанными 100 лет спустя: «Закон сохранения энергии … был величайшим физическим открытием середины XIX в. Он объединил много наук и находился в исключительной гармонии с тенденциями времени. Энергия стала универсальной валютой физики — так сказать золотым стандартом изменений, происходивших во вселенной…. Вся человеческая деятельность в целом — промышленность, транспорт, освещение и, в конечном счете, питание и сама жизнь — рассматривалась с точки зрения зависимости от этого одного общего термина — энергия» [2.12].


2.10. ПЕРВЫЕ ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

2.10.1. ЭЛЕКТРИЧЕСКИЕ ДВИГАТЕЛИ

Важнейшими научными предпосылками электромеханики послужили достижения в области электродинамики и открытие электромагнитной индукции. Свою положительную роль при разработке первых конструкций электрических машин и электромагнитных устройств сыграл и опыт конструирования машин и механизмов доэлектрического периода [1.6; 2.13].

В связи с тем что принцип обратимости электрической машины был открыт только в 30-х годах, а его использование в широких масштабах начинается лишь с 70-х годов XIX в., представляется вполне правомерным рассматривать отдельно историю создания электродвигателя и генератора в период до 1870 г. А поскольку единственным надежным и изученным источником электроэнергии до середины XIX в. был только гальванический элемент, то, естественно, первыми стали развиваться электрические машины постоянного тока.

В развитии электродвигателя постоянного тока можно отметить три основных этапа, впрочем достаточно условных, так как конструкции и принципы действия электродвигателей, характерные для одного этапа, в отдельных случаях появлялись вновь спустя много лет. Вместе с тем более поздние и более прогрессивные конструкции в зачаточной форме нередко можно найти в первоначальном периоде развития электродвигателя. Для характеристики каждого этапа совершенствования электродвигателя в дальнейшем изложении рассматриваются только наиболее типичные конструкции.

Начальный период развития электродвигателя (1821–1834 гг.) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую и начинается с описанного выше опыта М. Фарадея (см. рис. 2.11).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже