Читаем История электротехники полностью

Таким образом, фарфор имеет чрезвычайно широкое применение в электротехнике. Однако он имеет и недостаток — большие диэлектрические потери, сильно возрастающие при повышении температуры, что затрудняет применение фарфора при высоких частотах и температурах.

Развитие радиоэлектронной промышленности вызвало необходимость в новых керамических материалах, обладающих повышенными свойствами. Развитие этих материалов сначала шло по линии усовершенствования фарфора, а затем по линии получения керамических материалов другого состава.

В 1937–1938 гг. Н.П. Богородицкий провел исследования электрокерамических материалов, способных работать в электрических полях высокой частоты, которые имели большое значение для производства радиофарфора и ультрафарфора. Из этих материалов на заводе «Пролетарий» начали изготовляться многие конструкции высокочастотных установочных изделий и радиоизоляторов.

Следует отметить разработку технологии получения отечественного стеатита в 1944–1945 гг. в ГИЭКИ и освоение производства стеатитовых изоляторов, отличающихся от фарфоровых лучшими механическими и диэлектрическими параметрами. Благодаря малым диэлектрическим потерям этот материал нашел широкое применение в высокочастотных установках.

Широкое использование в специальной и бытовой технике высокочастотных устройств приводит к разработке и освоению выпуска высоковольтных конденсаторов для высокочастотных генераторов. В 1945–1946 гг. впервые в СССР разрабатывается и начинается промышленный выпуск малогабаритных керамических конденсаторов типа ТБК и КВИ, которые позволили заменить слюдяные конденсаторы и значительно снизить стоимостные показатели СВЧ-генераторов. Применение керамических конденсаторов типов ТГК-1К, ТГК-1А, ТГК-2,5 и ПТК-2,5, разработанных в 1952 г., также позволило снизить стоимость генераторов примерно в 2 раза и уменьшить их габариты.

В этот же период расширялись и реконструировались действующие изоляторные заводы, строились новые предприятия. Изоляторный завод в г. Камышлове, Южно-Уральский арматурно-изоляторный завод, заводы «Электроконденсатор», «Комиэлектростеатит», Славянский изоляторный завод. В 60-х годах была пущена первая очередь Пермского завода высоковольтных изоляторов, построены завод в г. Великие Луки и завод «Электрофарфор» в г. Бендеры. Мощность отдельных заводов достигала 10–15 тыс. т электрофарфора в год. Заводы, как правило, специализировались на выпуске отдельных видов изоляторов. Производство линейных высоковольтных (подвесных и штыревых) изоляторов было сосредоточено на заводах им. Артема и Южно-Уральском, высоковольтных керамических конденсаторов — на заводе «Электроконденсатор». Завод «Пролетарий» выпускал в основном аппаратные изоляторы и вилитовые разрядники.

Промышленностью в 50–60-е годы был освоен выпуск изоляторов различного назначения из фарфора, стеатита, кордиерита, титановых и других материалов. В производстве стали использовать глиноземистый и тонкодисперсный высококварцевый фарфор. Механическая прочность изоляторов из этих материалов соответствовала мировым стандартам. В короткое время в промышленности освоены более совершенные конструкции проходных, подвесных и опорных изоляторов. Заводы отрасли перешли на производство подвесных изоляторов для подвески тяжелых проводов на линиях электропередачи напряжением 500 кВ, линейных подвесных высоковольтных изоляторов из стекла. В 1964 г. изготовлены вводы постоянного тока на напряжения 200 и 400 кВ для линии электропередачи Волгоград — Донбасс.

В 60–70-х годах разработаны вводы с твердой изоляцией на напряжения 110 и 220 кВ, что позволило уменьшить их габариты и массу; конструкции вводов с твердой изоляцией для трансформаторов на напряжения 330, 500 и 750 кВ; керамические конденсаторы для наружной и внутренней установки с номинальными емкостями от 300 до 4500 пФ на напряжения до 350 кВ; малогабаритные керамические конденсаторы КСК-3–5 емкостью 6000 пФ на напряжение 3 кВ. По своим характеристикам эти конденсаторы превзошли лучшие зарубежные образцы [10.21].

Ленинградский филиал ГИЭКИ разработал новую серию магнитно-вентильных разрядников на напряжения 3–10 и 110–500 кВ с высокими эксплуатационными характеристиками. Здесь же разработана новая серия высокопрочных опорных изоляторов с механической прочностью до 2•104 Н•кг, позволяющая в 2–3 раза снизить массу разъединителей на напряжения 220, 330, 500 и 750 кВ.

В настоящее время продолжают совершенствоваться конструкции фарфоровых изоляторов и повышается их рабочее напряжение. Так, например, заводом «Изолятор» в последнее время разработаны вводы на очень высокие напряжения (500, 750 кВ и выше).


10.4. МАГНИТНЫЕ МАТЕРИАЛЫ В ЭЛЕКТРОПРОМЫШЛЕННОСТИ

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже