Читаем История электротехники полностью

Значительным успехом транзисторной электроники стало создание и широкое распространение кремниевых биполярных транзисторов. Благодаря физическим свойствам кремния эти транзисторы обладают более высокой стабильностью свойств при колебаниях температуры, значительно меньшими обратными токами переходов по сравнению с германиевыми. По мере совершенствования технологии и повышения чистоты исходного материала повысились предельные напряжения на переходах с 20–50 В у первых германиевых транзисторов до нескольких сотен вольт у современных кремниевых. Так же быстро росли частотные свойства приборов: от десятков и сотен килогерц у первых сплавных германиевых приборов до десятков мегагерц у современных кремниевых.

Изобретение в 50-е годы полевых (униполярных) транзисторов вначале не оставило заметного следа в полупроводниковой схемотехнике. Положение изменилось с разработкой новых технологий изготовления переходов. Современные полевые транзисторы не уступают биполярным по предельным значениям параметров и частотным свойствам и образуют самостоятельную группу с явно выраженными свойствами и областью применения.

Было бы несправедливо описывать развитие полупроводниковой электроники только с позиции совершенствования и обновления элементной базы. Создание новых устройств и систем промышленной электроники затронуло все сферы производства. Промышленность успешно освоила автоматизированное проектирование и производство печатных плат, беспроводной монтаж, методы входного и пооперационного контроля изделия. Тем не менее производство новых типов изделий проходило последовательно одни и те же этапы: задание на разработку, создание структурной и функциональной схем, разработка принципиальной схемы с использованием доступных и разрешенных комплектующих элементов; далее конструирования, подготовки производства и т.д. Каждая новая разработка проходила все этапы. В этих условиях было естественно для изделий массового производства автоматизировать все этапы разработки и изготовления. Так родились системы автоматизированного проектирования (САПР), системы изготовления печатных плат, системы размещения деталей и автоматической пайки, контроля плат и готовых изделий.

Новой сферой применения средств электроники стала обработка логических сигналов. До сих пор предполагалось, что любой сигнал содержит информацию, которая ставится в соответствие с количественной характеристикой сигнала: мгновенным значением аналогового напряжения, частотой гармонического носителя, длительностью импульса в последовательности.

Наряду с такими сигналами все большее применение находили логические сигналы, которые могли принимать фиксированное множество значений и отвечали на вопрос, принадлежит или не принадлежит данный сигнал к одному из подмножеств.

Общеизвестными стали двоичные (бинарные) сигналы, которые давали однозначный ответ на вопрос, истинно или ложно то или иное положение. Информация в таком сигнале содержалась не в уровне сигнала, а в его принадлежности к некоторому множеству. У бинарных сигналов это множество соответствует двум различным значениям, которые определяются как высокий (единичный) и низкий (нулевой) уровень. С логическими бинарными сигналами часто встречаются в технике, когда возникает необходимость отобразить состояние контакта (замкнут, разомкнут), транзисторного ключа (насыщен или находится в режиме отсечки). На основе логических переменных были введены логические функции. Примером логической функции может служить правило функционирования некоторого устройства: агрегат должен быть включен, если присутствует напряжение сети, температура не вышла из допустимых пределов, а с момента подачи сигнала на включение прошло не менее 5 с. На начальном этапе развития логических устройств в 50-е годы была осознана возможность реализации любых алгоритмов логического управления при ограниченном элементном базисе. Достаточно иметь весьма ограниченный набор типовых логических элементов, например, И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ, чтобы из них можно было создать электронное устройство любой сложности и любого функционального назначения.

Первые типовые логические элементы создавались на основе транзисторно-резисторных, диодно-транзисторных, транзисторно-транзисторных ячеек (РТЛ, ДТЛ, ТТЛ), выполняемых из дискретных компонентов навесным монтажем или на печатных платах. Конструктивно они выполнялись в виде компактного параллелепипеда в пластмассовом корпусе, иногда залитого эпоксидной смолой (рис. 11.12). Монолитный брусок с набором внешних выводов имел хорошие механические свойства. Слабым местом устройств были внешние выводы и соединения. Проектирование логических устройств означало полное, исчерпывающее описание функционирования на языке булевой алгебры, приведение к выбранному элементному базису и схемотехническое (топологическое) проектирование.

Рис. 11.12. Первые микромодули (1955–1960 гг.)

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже